首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Xu X  Zhang L  Shen D  Wu H  Liu Q 《Journal of fluorescence》2008,18(1):193-201
The serum albumin is the most abundant protein in blood plasma and the iron is essential for many cellular processes. However, the interaction between Fe3+ and haem-free serum albumin remains unclear. Here we provide evidence for the fact that haem-free BSA possesses one specific Fe3+-binding site. The binding of Fe3+ to BSA results in a significant quenching of the Trp fluorescence of BSA. The average apparent dissociation constant value for the interaction of Fe3+ and BSA is 3.46 × 10−8 ± 3 × 10−10 M at 37 °C and 3.30 × 10−8 ± 5 × 10−10 M at 25 °C, respectively, as determined by fluorescence titration. Addition of 50 μM Fe2+ to 1 μM BSA results in an obvious hysteretic effect on the fluorescence of BSA. The time-dependent fluorescence quenching of BSA by Fe2+ is not caused by the Fe2+-induced conformational change of BSA, but the oxygen-dependent oxidation of Fe2+ to Fe3+. Fe2+ undergoes an oxygen-dependent oxidation to Fe3+ under aerobic conditions, which is accelerated by the interaction of BSA with Fe3+ and extensively inhibited under anaerobic conditions. The results suggest that BSA may take part in non-transferrin bound iron transfer.  相似文献   

2.
Zhang F  Wu X  Zhan J 《Journal of fluorescence》2011,21(5):1857-1864
A sensitive and selective method for the trace determination of 3, 3’, 4, 4’-tetrachlorobiphenyl (PCB77) by using bovine serum albumin (BSA) as a fluorescence probe was introduced. Under optimum conditions, the enhanced fluorescence intensity was proportional to the concentration of polychlorinated biphenyls in the range of 8.9 × 10−8–5.0 × 10−6 mol L−1 for PCB77, and 5.0 × 10−7–5.0 × 10−6 mol L−1 for 2, 2’, 5, 5’-tetrachlorbiphenyl (PCB52). The detection limits (S/N = 3) of PCB77 and PCB52 were 2.6 × 10−8 mol L−1 and 2.9 × 10−7 mol L−1, respectively. Furthermore, the fluorescence enhancement mechanism was discussed in detail. Results indicated that fluorescence enhancement of the system originated from the formation of BSA-PCBs complexes. In addition, PCBs were mainly bound to the tyrosine residues in BSA molecules.  相似文献   

3.
A irreversible Hg2+ selective ratiometric fluorescence probe FR, a fluorescein fluorophore linked to a rhodamine B hydrazide by a thiourea spacer, was designed and synthesized. The developed probe FR exhibited great ratiometric fluorescence enhancement and remarkable yellow-magenta color change toward Hg2+ with excellent selectivity in aqueous acetone solution, and the ratiometric fluorescence response to Hg2+ was not interfered by other metal cations including Fe3+, Co2+, Ni2+, Cr3+, Zn2+, Pb2+, Cd2+, Ca2+, Mg2+, Ba2+ and Mn2+. The linear range and the detection limit of this supposed ratiometric fluorescence method for Hg2+ were 0.0–10.0 × 10−6 and 5 × 10−8 M, respectively.  相似文献   

4.
The interactions between N,N′-di(2-hydroxy-3-methyoxy-phenyl-1-methylene)-o-phenyldiamine-mone Zn(II), Nd(III) nitrate (2LZnNd) and bovine serum albumin (BSA) was investigated by various spectroscopic techniques under physiological conditions. It was proved that the fluorescence quenching of BSA by 2LZnNb was a result of the formation of a non-fluorescent complex with the binding constants of 3.15 × 105; 2.72 × 105 and 2.44 × 105 M–1 at 298 K, 304 K and 310 K, respectively. A marked increase in the fluorescence anisotropy in the proteinous environments indicates that BSA introduces motional restriction on the drug molecule. The corresponding thermodynamics parameters ΔH and ΔS were calculated to be –16.36 kJ mol–1 and 43.48 J mol–1 K–1 via van’t Hoff equation. Moreover, the competitive probes experiment revealed that the binding location of 2LZnNb to BSA is in the hydrophobic pocket of site II. The effect of 2LZnNb on the conformation of BSA has been analyzed by means of CD spectrum and three-dimensional fluorescence spectra. The results indicate that the conformation of BSA molecules was changed in the presence of 2LZnNb Schiff base.  相似文献   

5.
Luminescent quantum dots (QDs)-semiconductor nanocrystals were promising alternative to organic dyes for fluorescence-based applications. In this paper, we developed procedures to use mercaptoacetic acid (MAA) to modify ZnSe nanoparticles and made the nanoparticles to be soluble for the quantitative and selective determination of bovine serum albumin (BSA). Maximum fluorescence intensity was produced at pH 7.0, with excitation and emission wavelengths at 242 and 348 nm, respectively. Under optimal conditions, the straight line equation: F = 0.38 + 0.34 C (μg/ml) was found between the relative fluorescence intensity and the concentration of BSA in the range of 9.6–124.8 μg/ml, and the limit of detection was 2 μg/ml.  相似文献   

6.
7.
The interaction between a classic uncoupler (2,4-dinitrophenol, DNP) and bovine serum albumin (BSA) was investigated by fluorescence spectroscopy under the physiological conditions. The fluorescence quenching constants were calculated by the Stern-Volmer equation, and based upon the temperature dependence of quenching constants, it was proved that DNP caused a static quenching of the intrinsic fluorescence of BSA. Owing to the static quenching mechanism, different associative binding constants at various temperatures were determined and thus the thermodynamic parameters, namely enthalpy (ΔH = −21.12 kJ mol−1) and entropy changes (ΔS = 23.51 J mol−1 K−1) could be calculated based on the binding constants. Moreover, the enthalpy and entropy changes are consistent with the “Enthalpy-Entropy Compensation” equation obtained from our previous work. The negative enthalpy and positive entropy indicated that the electrostatic interactions played a major role in DNP-BSA binding process. Site marker competitive displacement experiments were carried out by using fluorescence and isothermal titration calorimetry (ITC) methods. These results showed that DNP bound with high affinity to Sudlow’s site I (subdomain IIA) of BSA. The distance (r = 3.78 nm) between donor (BSA) and acceptor (DNP) was obtained according to the mechanism of fluorescence resonance energy transfer (FRET). Furthermore, the results of synchronous fluorescence and circular dichroism (CD) spectroscopic studies indicated that the microenvironment and the secondary conformation of BSA were altered. The above results were supported by theoretical molecular modeling methods.  相似文献   

8.
The luminescence properties of Re(I) complexes incorporating the dcbpy ligand (dcbpy = n,n′-dicarboxylic acid-2,2′-bipyridine; n = 3, 4) were investigated as well as their utility as Pb2+ sensors. An unusual binuclear complex of the 3,3′- species was isolated. The emission intensity and lifetime for all complexes were found to be highly temperature-dependent, with quantum yields and lifetimes dramatically greater at 77 K than at room temperature. The monomeric 3,3′-dcbpy Re(I) complex demonstrates nearly 1:1 binding with Pb2+. The effect of this lead binding on the emission intensity is great, but the low quantum yields allow only for detection of the metal at the micromolar level. The binding of Pb2+ to the 4,4′-dcbpy complex is modeled and the interaction is demonstrated to involve two binding sites.  相似文献   

9.
In this paper, several spectroscopic techniques were used to investigate the interaction of engeletin (ELN) with bovine serum albumin (BSA). The analysis of UV–Vis absorption and fluorescence spectra revealed that ELN and BSA formed a static complex ELN–BSA, and ELN quenched the fluorescence of BSA effectively. According to the thermodynamic parameters ΔS 0 = 47.27 J·mol−1·K−1 and ΔΗ 0 = −10.34 kJ·mol−1, the hydrophobic and hydrogen bond interactions were suggested to be the major interaction forces between ELN and BSA. Raman spectroscopy indicated that the binding of ELN slightly changed the conformations and microenviroment of BSA and decreased the α–helix content of BSA.  相似文献   

10.
Luminescent quantum dots (QDs) have widely used in some biological and biomedical fields due to their unique and fascinating optical properties, meanwhile the interaction of QDs with biomolecules recently attract increasing attention. In this paper, we employed fluorescence correlation spectroscopy (FCS) to investigate the nonspecific interaction between CdTe QDs and bovine serum albumin (BSA) as a model, and evaluate their stoichiometric ratio and association constant. Our results documented that BSA was able to bind to CdTe QDs and form the QD–BSA complex by a 1:1 stoichiometric ratio. The association constant evaluated is 1.06 ± 0.14 × 107 M−1 in 0.01 M phosphate buffer (pH = 7.4). Furthermore, we found that QD–BSA complex dissociated with increase of ion strength, and we speculated that the interaction of CdTe QDs with BSA was mainly attributed to electrostatic attraction. Our preliminary results demonstrate that fluorescence correlation spectroscopy is an effective tool for investigation of the interaction between quantum dots (or nanoparticles) and biomolecules.  相似文献   

11.
Condensation product (L) of salicylaldehyde and semicarbazide behaves as a fluorescent sensor for Cd2+ ion, in 1:1 DMSO:H2O, over Mn2+, Fe2+, Ni2+, Co2+, Cu2+, Pb2+ and Hg2+ ions. The emission peak of L at λmax = 520 nm, on excitation with 420 nm wavelength photons, showed an enhancement in intensity of ca 60-fold when interacted with Cd2+ ion. The intensity was however found to remain unaltered when interacted with metal ions—Mn2+, Fe2+, Ni2+, Co2+, Cu2+, Pb2+ and Hg2+. The intensity increases by approximately 20 fold on interaction with Zn2+ ion. The increase in the fluorescent peak can be explained on the basis of photo induced electron transfer (PET) mechanism. A 1:1 complexation between Cd2+ and L with log β = 4.25 has been proved.  相似文献   

12.
A new pyrene derivative (chemosensor 1) containing a picolinohydrazide moiety exhibits high selectivity for Cu2+ ion detection in mixed aqueous media (CH3OH:H2O = 7:3). Significant fluorescence enhancement was observed with chemosensor 1 in the presence of Cu2+. However, the metal ions Ag+, Ca2+, Cd2+, Co2+, Cu2+, Fe2+, Fe3+, Hg2+, K+, Mg2+, Mn2+, Ni2+, Pb2+, and Zn2+ produced only minor changes in fluorescence for the system. The apparent association constant (K a) of Cu2+ binding in chemosensor 1 was found to be 2.75*103 M−1. The maximum fluorescence enhancement caused by Cu2+ binding in chemosensor 1 was observed over the pH range 5–8. Moreover, by means of fluorescence microscopy experiments, it is demonstrated that 1 can be used as a fluorescent probe for detecting Cu2+ in living cells.  相似文献   

13.
The photophysical and complexing properties of Rhod-5N (commercially available) in MOPS buffer are reported. This fluorescent molecular sensor consists of a BAPTA chelating moiety bound to a rhodamine fluorophore. Its fluorescence quantum yield is low and a drastic enhancement of fluorescence intensity upon cation binding was observed. Special attention was paid to the complexation with Cd2+, a well known toxic metal ion. Possible interference with other metal ions (Na+, K+, Mg2+, Ca2+, Zn2+, Pb2+) was examined. Rhod-5N was found to be highly selective of Cd2+ over those interfering cations except Pb2+. The limit of detection is 3.1 μg l−1.  相似文献   

14.
As one of nucleic acid molecular “light switch”, Ru(bipy)2(dppx)2+ is a good probe for the determination of double-helical DNA, which displays intense fluorescence when double-helical DNA is present. However, the fluorescence of Ru(bipy)2(dppx)2+ is quenched when Ag+ is added to the Ru(bipy)2(dppx)2+-DNA system. Based on the quenching of the fluorescence of Ru(bipy)2(dppx)2+-DNA system by Ag+, a simple, rapid and specific method for Ag+ determination was proposed. In the optimum conditions, Ag+ concentration versus Ru(bipy)2(dppx)2+ fluorescence intensity gave a linear response in the range from 0.2 to 6.0 μM with a detection limit (3σ) of 3.2 × 10−8 M. The proposed method has been applied to determine the Ag+ in water samples and sulfadiazine silver cream successfully. Because of the intense fluorescence of Ru(bipy)2dppx2+ when DNA is present, the interaction between Ag+ and DNA was confirmed by fluorescence microscopy and the phenomenon of the fluorescence images agreed well with the results. The possible mechanism of the reaction was also discussed by circular dichroism spectra and isothermal titration calorimetry.  相似文献   

15.
Wang G  Wang L  Tang W  Hao X  Wang Y  Lu Y 《Journal of fluorescence》2011,21(5):1879-1886
The binding of quercetin to lysozyme (LYSO) in aqueous solution was investigated by fluorescence spectroscopy, UV-vis absorption spectroscopy and molecular simulation at pH 7.4. The fluorescence quenching of LYSO by addition of quercetin is due to static quenching, the binding constants, K a , were 3.63 × 104, 3.31 × 104 and 2.85 × 104 L·mol−1 at 288, 298 and 308 K, respectively. The thermodynamic parameters, enthalpy change, ∆H, and entropy change, ∆S, were noted to be −7.56 kJ·mol−1 and 61.07 J·mol−1·K−1. The results indicated that hydrophobic interaction may play a major role in the binding process. The distance r between the donor (LYSO) and acceptor (quercetin) was determined as 3.34 nm by the fluorescence resonance energy transfer. The synchronous fluorescence spectroscopy showed the polarity around the tryptophan residues increased and the hydrophobicity decreased. Furthermore, the study of molecular simulation indicated that quercetin could bind to the active site (a pocket made up of 24 amino-acid residues) of LYSO mainly via hydrophobic interactions and that there were hydrogen interactions between the residues (Gln 57, Ile 98) of LYSO and quercetin. The accessible surface area (ASA) calculation verified the important roles of tryptophan (Trp) residues during the binding process.  相似文献   

16.
Steady state and time resolved fluorescence quenching behaviors of meso-Tetrakis (pentafluorophenyl) porphyrin (H2F20TPP) in presence of different aliphatic and aromatic amines have been executed in homogeneous dichloromethane (DCM) solution. At room temperature in DCM, free base (H2F20TPP) shows fluorescence with two distinct peaks at 640 and 711 nm and natural lifetime τ f = 9.8 ns which are very similar to that of meso-tetraphenyl porphyrin (TPP). Unlike TPP, addition of both aliphatic and aromatic amines to a solution containing H2F20TPP results in an efficient decrease in fluorescence intensity without altering the shape and peak position of fluorescence emission. Upon addition of amines there was no change in optical absorption spectra of H2F20TPP. The fluorescence quenching rate constants ranged from 1 × 109 to 4 × 109 s−1, which are one order below to the diffusion control limit, and temperature dependent quenching rate constants yield the activation energies which are found to be order of 0.1 eV. Femto second transient absorption studies reveal the existence of amine cation radical and porphyrin anion radicals with very short decay time (15 ps). The fluorescence quenching reaction follows Stern–Volmer kinetics. Steady state and time-resolved data are interpreted within general kinetic scheme of Marcus semi-classical model which attributes bimolecular electron transfer process between amines and the lowest excited singlet state of H2F20TPP. Calculated internal reorganization energies are found to be in between 0.04 and 0.22 ev. Variation of electron transfer rate as function of free energy change (∆G0) points the ET reactions in the present systems are in Marcus normal region. This is the first example of reductive fluorescence quenching of free base neutral porphyrins in homogeneous organic solvent ever known.  相似文献   

17.
The spectral-luminescent characteristics of newly synthesized styrylcyanine dyes on the base of dyes Sbo ((E)-2-(4-(dimethylamino)styryl)-3-methylbenzo[d]oxazol-3-ium iodide) and Sil ((E)-2-(4-(dimethylamino)styryl)-1,3,3-trimethyl-3H-indolium perchlorate) in aqueous solutions without and in the presence of bovine serum albumin (BSA) were studied. It was established that the absorption spectra of dyes Tol-6, Dbo-10 and Dil-10 with increasing amount of BSA appear new bands with λmax = 505 nm, λmax = 512 nm and λmax = 566 nm, respectively, whose intensity increases in proportion to the amount of albumin. The intensity of the glow of the main band of fluorescence in the presence of BSA sharply increases. The binding constant (K) and the number of binding sites (N) of studied dyes with BSA were determined. The dependence of binding constants with BSA on the dipole moment of dye molecules was determined, which indicates that besides electrostatic forces of attraction between molecules styrylcyanine dyes with BSA, hydrophobic interactions are essential.  相似文献   

18.
A new anthracene-based fluorescent PET sensor 1 with a tridentate ionophore of amide/β-amino alcohol displays very good selectivity and sensitivity for Fe3+ (K a = 1.6 × 103 M−1) and Hg2+ (K a = 2.1 × 103 M−1) in CH3CN–H2O (3:7, v/v) with detection limit of 1 μM. More fluorescence enhancement was observed when 1 selectively detected Fe3+ or Hg2+ in CH3CN and its detection limit was up to 0.03 μM.  相似文献   

19.
A fluorescent assay of Hg2+ in neutral aqueous solution was developed using N-[p-(dimethylamino)benzamido]-N′-phenylthiourea (1). 1’s fluorogenic chemodosimetric behaviors towards various metal ions were studied and a high sensitivity as well as selectivity was achieved for Hg2+. It was because of a strongly fluorescent 1,3,4-oxadiazoles which was produced by the Hg2+ promoted desulfurization reaction. The spectra of ESI mass and IR provided evidences for this reaction. According to fluorescence titration, a good linear relationship ranging from 1.0 × 10−7 to 2.0 × 10−5 mol l−1 was obtained with the limit of detection as 3.1 × 10−8 mol l−1. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Water-soluble Mn2+-doped ZnS quantum dots (QDs) were prepared using mercaptoacetic acid as the stabilizer. The optical properties and structure features were characterized by X-Ray, absorption spectrum, IR spectrum and fluorescence spectrum. In pH 7.8 Tris-HCl buffer, the QDs emitted strong fluorescence peaked at 590 nm with excitation wavelength at 300 nm. The presence of sulfide anion resulted in the quenching of fluorescence and the intensity decrease was proportional to the S2− concentration. The linear range was from 2.5 × 10−6 to 3.8 × 10−5 mol L−1 with detection limit as 1.5 × 10−7 mol L−1. Most anions such as F, Cl, Br, I, CH3CO2 , ClO4 , CO3 2−, NO2 , NO3 , S2O3 2−, SO3 2− and SO4 2− did not interfere with the determination. Thus a highly selective assay was proposed and applied to the determination of S2− in discharged water with the recovery of ca. 103%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号