首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In order to improve visible light photocatalytic activities of the nanometer TiO2, a novel and efficient Cr,S-codoped TiO2 (Cr-TiO2-S) photocatalyst was prepared by precipitation-doping method. The crystalline structure, morphology, particle size, and chemical structure of Cr-TiO2-S were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Fourier transform infrared (FT-IR) techniques, respectively. Results indicate that the doping of Cr and S, cause absorption edge shifts to the visible light region (λ > 420 nm) compare to the pure TiO2, reduces average size of the TiO2 crystallites, enhances desired lattice distortion of Ti, promotes separation of photo-induced electron and hole pair, and thus improves pollutant decomposition under visible light irradiation. The photocatalytic activities of Cr-TiO2-S nanoparticles were evaluated using the photodegradation of methyl orange (MO) as probe reaction under the irradiation of UV and visible light and it was observed that the Cr-TiO2-S photocatalyst shows higher visible photocatalytic activity than the pure TiO2. The optimal Cr-TiO2-S concentration to obtain the highest photocatalytic activity was 5 mol% for both of Cr and S.  相似文献   

2.
A novel copper and sulfur codoped TiO2 photocatalyst was synthesized by modified sol-gel method using titanium(IV) isopropoxide, CuCl2·2H2O and thiourea as precursors. The samples were characterized by X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), scanning electron microscopy equipped with energy dispersive X-ray micro-analysis (SEM-EDX), transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) analysis. The XRD results showed undoped and Cu,S-codoped TiO2 nanoparticles only include anatase phase. Effect of calcination temperature showed rutile phase appears in 650 and 700 °C for undoped and 0.1% Cu,S-codoped TiO2, respectively. The SEM analysis revealed the doping of Cu and S does not leave any change in morphology of the catalyst surface. The increase of copper doping enhanced “red-shift” in the UV-vis absorption spectra. The TEM images confirmed the dopants suppressed the growth of TiO2 grains. The photocatalytic activity of samples was tested for degradation of methyl orange (MO) solutions. The results showed photocatalytic activity of the catalysts with 0.05% Cu,0.05% S and 0.1% Cu,0.05% S were higher than that of other catalysts under ultraviolet (UV) and visible irradiation, respectively. Because of synergetic effect of S and Cu, the Cu,S-codoped TiO2 catalyst has higher activity than undoped and Cu or S doped TiO2 catalysts.  相似文献   

3.
C, N, S-tridoped TiO2 nanotubes were synthesized via hydrothermal synthesis and post-treatment, and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), the Brunauer-Emmett-Teller method (BET), and UV-vis diffuse reflectance spectroscopy (DRS). The UV-diffuse reflectance spectra of all the C, N, S-tridoped TiO2 nanotubes greatly extended the absorption edge to the visible light region, and the absorbance in the visible region increased with increasing molar ratio of thiourea to Ti (R), which could be attributed to C, N, S-tridoping in the form of cation C-doping, interstitial N-doping, cation S-doping, and adsorbed ions’ states. The photocatalytic activity of C, N, S-tridoped TiO2 nanotubes was evaluated by photocatalytic photodegradation of potassium ethyl xanthate (KEX) under visible light irradiation. It was found that the photocatalytic activity of the prepared samples increased with increasing molar ratio of thiourea to Ti (R). At R=6, the photocatalytic activity of the tridoped sample TNTS-6 reached a maximum value. With further increase in R, photocatalytic activity of the sample decreased, which could be attributed to the high visible light activity resulting from the balance between visible light absorption and recombination of electron/hole pairs.  相似文献   

4.
The photocatalyst B and N codoped TiO2 (B-N-TiO2) was prepared via the sol-gel method by using boric acid and ammonia as B and N precursors. The doping mode, band structure and photocatalytic mechanism of B-N-TiO2 were investigated well and elucidated in detail. B-N-TiO2 showed the narrowed band gap and thus extended the optical absorption due to interstitial N and [NOB] species in the TiO2 crystal lattice. The coexistence of interstitial N and [NOB] species in the TiO2 crystal lattice and surface NOx species allowed the more efficient utilization of visible light. Simultaneously, interstitial [NOB] and N species and surface B2O3 and NOx species facilitated the separation of photo generated electrons and holes and suppress their recombination effectively. Hence, B-N-TiO2 showed a higher photocatalytic activity than pure TiO2, N-doped TiO2 (N-TiO2) and B-doped TiO2 (B-TiO2) under both UV and visible light irradiation.  相似文献   

5.
Nitrogen-doped titanium oxide (TiOxNy) films were prepared with ion-assisted electron-beam evaporation. The nitrogen (N) incorporated in the film is influenced by the N2 flux modulated by the N2 flow rate through an ion gun. The TiOxNy films have the absorption edge of TiO2 red-shifted to 500 nm and exhibit visible light-induced photocatalytic properties in the surface hydrophilicity and the degradation of methylene blue. The structures and states of nitrogen in the films are investigated by X-ray diffraction patterns (XRD), and X-ray photoelectron spectroscopy (XPS) and related to their visible light-induced photocatalytic properties. The results indicate that the substitutional N in anatase TiO2 can induce visible light photocatalysis. The substitutional N is readily doped by the energetic nitrogen ions from the ion gun. The best photocatalytic activity is obtained at the largest N loading about 5.6 at.%, corresponding to the most substitutional N in anatase TiO2. The film exhibits the degradation of methylene blue with a rate-constant (k) about 0.065 h−1 and retaining 7° water contact angle on the surface under visible light illumination.  相似文献   

6.
To use solar irradiation or interior lighting efficiently, we sought a photocatalyst with high reactivity under visible light. Nitrogen and carbon doping TiO2−xyNxCy films were obtained by heating the TiO2 gel in an ionized N2 gas and then were calcined at 500 °C. The TiO2−xyNxCy films have revealed an improvement over the TiO2 films under visible light (wavelength, 500 nm) in optical absorption and photocatalytic activity such as photodegradation of methyl orange. X-ray photoemission spectroscopy, infrared spectrum and UV-visible (UV-vis) spectroscopy were used to find the difference of two kinds of films. Nitrogen and carbon doped into substitutional sites of TiO2 has been proven to be indispensable for band-gap narrowing and photocatalytic activity.  相似文献   

7.
Novel Pd/InVO4-TiO2 thin films with visible light photocatalytic activity were synthesized from the Pd and InVO2 co-doped TiO2 sol via sol-gel method. The photocatalytic activities of Pd/InVO4-TiO2 thin films were investigated based on the oxidative decomposition of methyl orange in aqueous solution. The as-prepared samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and UV-vis absorption spectroscopy (UV-vis). The results indicate that the Pd/InVO4-TiO2 thin films are compact, uniform and consist of sphere nanoparticles with diameters about 80-100 nm. The UV-vis spectra show that the Pd/InVO4-TiO2 thin films extend the light absorption spectrum toward the visible region. XPS results reveal that doped Pd exist in the form of metallic palladium. The photocatalytic experiments demonstrate that Pd doping can effectively enhance the photocatalytic activities of InVO4-TiO2 thin films in decomposition of aqueous methyl orange under visible light irradiation. It has been confirmed that Pd/InVO4-TiO2 thin films could be excited by visible light (E < 3.2 eV) due to the existence of the Pd and InVO4 doped in the films.  相似文献   

8.
In this paper, WxTi1−xO2 solid solutions (x = 0.000, 0.005, 0.010, 0.015, and 0.020) microspheres were synthesized with an aerosol-assisted flow synthesis method. The resulting samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen sorption, UV-vis diffuse reflectance spectrum (DRS) and X-ray photoelectron spectroscopy (XPS). The photocatalytic activities of the as-prepared catalysts were measured by the degradation of rhodamine B (RhB) under visible light irradiation (λ ≥ 420 nm). All the solid solutions exhibited higher photocatalytic activities than pure TiO2 and the W0.015Ti0.985O2 solid solution possessed the highest photocatalytic activity. The degradation constant of RhB on W0.015Ti0.985O2 solid solution catalyst was about 15 times of that of the pure TiO2 and 25 times of that of Degussa P25, respectively. This study provides an effective method to prepare visible light photocatalysts on a large scale.  相似文献   

9.
The nanoparticles of TiO2 modified with carbon and iron were synthesized by sol-gel followed solvothermal method at low temperature. Its chemical composition and optical absorption were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), photoluminescence emission spectroscopy (PL), UV-vis absorption spectroscopy, and electron paramagnetic resonance (EPR). It was found that carbon and iron modification causes the absorption edge of TiO2 to shift the visible light region. Fe(III) cation could be doped into the matrix of TiO2, by which could hinder the recombination rate of excited electrons/holes. Superior photocatalytic activity of TiO2 modified with carbon and iron was observed for the decomposition of acid orange 7 (AO7) under visible light irradiation. The synergistic effects of carbon and iron in modified TiO2 nanoparticles were responsible for improving visible light photocatalytic activity.  相似文献   

10.
A mesoporous S,I-codoped TiO2 photocatalyst with high visible light photocatalytic activity was synthesized through the hydrolysis and condensation of titanium isopropoxide with thiourea and iodic acid as the precursors. The as-prepared catalysts were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), UV-vis diffuse reflectance (DRS), X-ray photoelectron spectroscopy (XPS), Fourier translation infrared spectroscopy (FT-IR), and N2 adsorption. The results showed that the cations of S6+ and I5+ could substitute for some of the lattice titanium (Ti4+). The S,I-codoping forms the new bands above the valence band and narrows the band-gap of the TiO2, then shifts the absorption edge from UV light region to visible light range. The activity of the catalyst was examined by photodegradation of methylene blue in an aqueous solution under visible light irradiation. The activity of the S,I-codoped catalyst is far superior to that of single S or I-doped TiO2 counterpart. The high visible light photocatalytic activity could be attributed to the strong absorption of light, well-crystalline anatase phase, and mesoporous microstructure.  相似文献   

11.
A series of Ti1−xMoxO2−yNy samples were prepared by using sol-gel method and characterized by X-ray diffraction, transmission electron microscopy and UV-vis absorption spectroscopy. All Ti1−xMoxO2−yNy samples are anatase phase. It is found that Mo, N mono-doping can increase visible light absorption, while (Mo + N) co-doping can greatly enhance absorption in whole visible region. Results of our first-principles band structure calculations reveal that (Mo + N)-doping, especially passivated co-doping can increase the up-limit of dopant concentration and create more impurity bands in the band gap of TiO2, which leads to a greatly increase of its visible-light absorption without a decrease of its redox potential. It reveals that (Mo + N) co-doped TiO2 is promising for a photocatalyst with high photocalystic activity under visible light.  相似文献   

12.
Comparative GGA and GGA+U calculations for pure and Mo doped anatase TiO2 are performed based on first principle theory, whose results show that GGA+U calculation provide more reliable results as compared to the experimental findings. The direct band gap nature of the anatase TiO2 is confirmed, both by using GGA and GGA+U calculations. Mo doping in anatase TiO2 narrows the band gap of TiO2 by introducing Mo 4d states below the conduction band minimum. Significant reduction of the band gap of anatase TiO2 is found with increasing Mo doping concentration due to the introduction of widely distributed Mo 4d states below the conduction band minimum. The increase in the width of the conduction band with increasing doping concentration shows enhancement in the conductivity which may be helpful in increasing electron–hole pairs separation and consequently decreases the carrier recombination. The Mo doped anatase TiO2 exhibits the n-type characteristic due to the shifting of Fermi level from the top of the valence band to the bottom of the conduction band. Furthermore, a shift in the absorption edge towards visible light region is apparent from the absorption spectrum which will enhance its photocatalytic activity. All the doped models have depicted visible light absorption and the absorption peaks shift towards higher energies in the visible region with increasing doping concentration. Our results describe the way to tailor the band gap of anatase TiO2 by changing Mo doping concentration. The Mo doped anatase TiO2 will be a very useful photocatalyst with enhanced visible light photocatalytic activity.  相似文献   

13.
Titanium dioxide photocatalysts co-doped with iron (III) and lanthanum were prepared by a facile sol-gel method. The structure of catalysts was characterized by X-ray diffraction (XRD), Raman spectroscopy, UV-vis diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy (XPS). The photocatalytic activities of the samples were evaluated by the degradation of methylene blue in aqueous solutions under visible light (λ > 420 nm) and UV light irradiation. Doping with Fe3+ results in a lower anatase to rutile (A-R) phase transformation temperature for TiO2 particles, while doping with La3+ inhibits the A-R phase transformation, and co-doping samples indicate that Fe3+ partly counteracts the effect of La3+ on the A-R transformation property of TiO2. Fe-TiO2 has a long tail extending up the absorption edges to 600 nm, whereas La-TiO2 results in a red shift of the absorption. However, Fe and La have synergistic effect in the absorption of TiO2. Compared with Fe3+ and La3+ singly doped TiO2, the co-doped simple exhibits excellent visible light and UV light activity and the synergistic effect of Fe3+ and La3+ is responsible for improving the photocatalytic activity.  相似文献   

14.
S/Cr doped mesoporous TiO2 (S-TiO2, Cr-TiO2, S-Cr-TiO2) were successfully synthesized via a simple, effective and environmental benign solid state reaction route. The low angle XRD patterns demonstrated that the resulting samples possess mesostructures. The further characterizations via N2 adsorption-desorption and XPS showed that the typical S/Cr co-doped mesoporous TiO2 (S-Cr-TiO2(5S-5Cr)) possesses mesopore with the high specific surface area of 118.4 m2/g and narrow pore size distribution, and both S and Cr have been incorporated into the lattice of TiO2 with the amounts of 4.16% sulfur and 7.88% chromium, respectively. And Raman spectroscopy shows that the surface of S-Cr-TiO2 (5S-5Cr) material possesses stretching vibrational peaks at ∼709, ∼793 cm−1 are assignable to the Ti-O-Cr, O-Cr (Ti)-OH bonds, respectively. Interestingly, the UV-vis displayed that the absorption regions of S/Cr doped mesoporous TiO2 cover the visible light region. As for the series of S-Cr-TiO2 samples, the absorption region even extends to near infrared region with strong adsorption. Moreover, compared with the pure titanium dioxide (P25-TiO2), the photodegradation properties of bromocresol green (BCG) on the S/Cr doped mesoporous TiO2 showed excellent photocatalytic properties under visible light irradiation. Within 50 min visible light irradiation, 82.6% of the initial BCG was degraded for the S-Cr-TiO2 (6S-4Cr) photocatalyst.  相似文献   

15.
In this study we present the effects of iron oxide (Fe2O3) on titanium dioxide (TiO2) in synthesising visible-light reactive photocatalysts. A Fe2O3-TiO2 composite photocatalyst was synthesized from Fe2(SO4)3 and Ti(SO4)2 by a ethanol-assisted hydrothermal method. The preparation conditions were optimized through the investigation of the effects of hydrothermal temperature and time as well as molar ratio of Ti to Fe on the photocatalytic activity. The visual, physical and chemical properties of the Fe2O3-TiO2 composites were investigated. The results showed that α-Fe2O3 and anatase TiO2 were present in the composites. The Fe2O3-TiO2 synthesized under optimum condition consisted of mesoporous structure with an average pore size of 4 nm and a surface area of 43 m2/g. Under visible and solar light irradiation, the photocatalytic activity of optimized sample was significantly higher than that of pure TiO2. This sample led to a photodegradation efficiency of 90% and 40% of auramine under visible light and solar light, respectively.  相似文献   

16.
The simultaneous Ag loaded and N-doped TiO2 hollow nanorod arrays with various contents of silver (Ag/N-THNAs) were successfully synthesized on glass substrates by one-pot liquid phase deposition (LPD) method using ZnO nanorod arrays as template. The catalysts were characterized by Raman spectrum, field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscope (HRTEM), ultraviolet-vis (UV-vis) absorption spectrum and X-ray photoelectron spectroscopy (XPS). The results suggest that AgNO3 additive in the precursor solutions not only can promote the anatase-to-rutile phase transition, but also influence the amount of N doping in the samples. The photocatalytic activity of all the samples was evaluated by photodegradation of methylene blue (MB) in aqueous solution. The sample exhibited the highest photocatalytic activity under UV light illumination when the AgNO3 concentration in the precursor solution was 0.03 M, due to Ag nanoparticles acting as electron sinks; When the AgNO3 concentration was 0.07 M, the sample performed best under visible light illumination, attributed to the synergetic effects of Ag loading, N doping, and the multiphase structure (anatase/rutile).  相似文献   

17.
Nanostructure titanium dioxide (TiO2) has been synthesized by hydrolysis of titanium tetrachloride in aqueous solution and Ag-TiO2 nanoparticles were synthesized by photoreduction method. The resulting materials were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier-transform infrared (FT-IR) and UV-vis absorption spectroscopy. The experimental results showed that the sizes of the synthesized TiO2 and Ag-TiO2 particles are in the range of 1.9-3.2 nm and 2-10 nm, respectively. Moreover, Ag-TiO2 nanoparticles exhibit enhanced photocatalytic activity on photodegradation of Safranin-O (SO) dye as compared to pure TiO2. The positive effect of silver on the photocatalytic activity of TiO2 may be explained by its ability to trap electrons. This process reduces the recombination of light generated electron-hole pairs at TiO2 surface and therefore enhances the photocatalytic activity of the synthesized TiO2 nanoparticles. The effects of initial dye and nanoparticle concentrations on the photocatalytic activity have been studied and the results demonstrate that the dye photodegradation follows pseudo-first-order kinetics. The observed maximum degradation efficiency of SO is about 60% for TiO2 and 96% for Ag-TiO2.  相似文献   

18.
TiO2 although considered a promising photocatalyst for the degradation of aqueous pollutants, it suffers from poor absorption in the visible region and hence requires ultraviolet (UV) light for activation. To make TiO2 a visible active photocatalyst, multielement (C, N, B, and F) doping has been done. The synthesised CNBF/TiO2 catalysts were calcined at different temperatures and characterized by XRD, BET surface area, UV DRS, XPS, HRSEM-EDAX, and TEM techniques. These catalysts found to show less band gap values when compared to bare TiO2. These catalysts were tested for their catalytic activity towards the degradation of a textile dye - congo red (CR) under different reaction conditions. It was found that the photocatalytic activity was dependent on both doping of multielement and the calcination temperature of CNBF/TiO2. The co-doped catalysts which were calcined at 400 °C and 600 °C (100% intensity in anatase phase) were found to be the best catalysts (100% decolourisation of CR in 21/2 h and 2 h respectively). TOC analysis carried out for the samples at the reaction time of 5 h showed very high percentage (83%) degradation of CR over CNBF/TiO2 catalysts calcined at 600 °C when compared to the other catalysts calcined at different temperatures. CNBF/TiO2 (1000 °C) showed very less photocatalytic activity due to the formation of rutile phase.  相似文献   

19.
In this study, TiO2−xNx/TiO2 double layers thin film was deposited on ZnO (80 nm thickness)/soda-lime glass substrate by a dc reactive magnetron sputtering. The TiO2 film was deposited under different total gas pressures of 1 Pa, 2 Pa, and 4 Pa with constant oxygen flow rate of 0.8 sccm. Then, the deposition was continued with various nitrogen flow rates of 0.4, 0.8, and 1.2 sccm in constant total gas pressure of 4 Pa. Post annealing was performed on as-deposited films at various annealing temperatures of 400, 500, and 600 °C in air atmosphere to achieve films crystallinity. The structure and morphology of deposited films were evaluated by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and atomic force microscopy (AFM). The chemical composition of top layer doped by nitrogen was evaluated by X-ray photoelectron spectroscopy (XPS). Photocatalytic activity of samples was measured by degradation of Methylene Blue (MB) dye. The optical transmittance of the multilayer film was also measured using ultraviolet-visible light (UV-vis) spectrophotometer. The results showed that by nitrogen doping of a fraction (∼1/5) of TiO2 film thickness, the optical transmittance of TiO2−xNx/TiO2 film was compared with TiO2 thin film. Deposited films showed also good photocatalytic and hydrophilicity activity at visible light.  相似文献   

20.
In this work, TiO2-N powders were synthesized by high-energy ball milling, using commercial titanium dioxide (TiO2) in the anatase phase and urea to introduce nitrogen into TiO2 in order to enhance their photocatalytic properties in the visible spectral region. Several samples were prepared by milling a mixture of TiO2-urea during 2, 4, 8, 12 and 24 h and characterized by spectroscopic and analytical techniques. X-ray diffraction (XRD) results showed the coexistence of anatase and high-pressure srilankite TiO2 crystalline phases in the samples. Scanning electron microscopy (SEM) revealed that the grain size of the powder samples decreases to 200 nm at 24 h milling time. UV-Vis diffuse reflectance spectroscopic data showed a clear red-shift in the onset of light absorption from 387 to 469 nm as consequence of nitrogen doping in the samples. The photocatalytic activity of the TiO2-N samples was evaluated by methylene blue degradation under visible light irradiation. It was found that TiO2-N samples had higher photocatalytic activity than undoped TiO2 samples, which could be assigned to the effect of introducing N atoms and XPS results confirm it. Using polyethylenimine (PEI), transparent thin films of TiO2-N nanoparticles were prepared by layer-by-layer self assembly method. UV-visible spectrophotometry was employed in a quantitative manner to monitor the adsorbed mass of TiO2 and PEI after each dip cycle. The adsorption of both TiO2 and PEI showed a saturation dip time of 15 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号