首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
生物降解多功能缓释微球的制备与表征   总被引:6,自引:1,他引:5  
梁晓飞  王汉杰  罗浩  田惠  支敏  王永兰  常津 《化学学报》2008,66(19):2178-2183
通过羧甲基壳聚糖接枝二甲基十八烷基环氧丙基氯化铵, 合成水油两溶性的羧甲基壳聚糖十八烷基季铵盐(OQCMC); 并将其作为乳化剂与乳酸-羟基乙酸(PLGA)和羟乙基纤维素(HEC)复合, 利用溶剂挥发法, 构建一种多功能的药物载体缓释系统, 并尝试包裹脂溶性药物盐酸米诺环素. 利用Transmission electron microscopy, Quasielastic laser light scattering, Zeta电位仪, FTIR, 1H NMR等对OQCMC及载药微球进行表征, 并进行药物的体外释放实验. 结果表明: OQCMC可作为一种优良的乳化剂对PLGA微球进行修饰; 并可使复合微球体系带正电, 在提高微球载药率(9.4%)的同时减小微球粒径[(166.4±0.8) nm]; 复合微球体系对盐酸米诺环素具有较好的物理包裹能力, 并有长效缓释作用(PBS, pH=7.9).  相似文献   

2.
合成了一种甘露醇引发的星型共聚物甘露醇-聚乳酸-聚乙三醇1000维生素E琥珀酸酯(M-PLATPGS).利用纳米沉淀法制备载紫杉醇M-PLA-TPGS纳米颗粒.纳米颗粒近似球形,粒径分布较窄.对载药纳米颗粒进行粒径、表面电荷、载药量、包封率和体外药物释放的表征,结果表明,体外药物释放呈双相释放模型,M-PLA-TPGS纳米颗粒在前列腺癌PC-3细胞中的摄取水平要高于PLGA和PLA-TPGS纳米颗粒.载紫杉醇M-PLA-TPGS纳米颗粒对于前列腺癌细胞的的毒性显著高于载紫杉醇PLA-TPGS纳米颗粒和商业制剂Taxol,证明星型M-PLA-TPGS聚合物作为纳米药物载体优于线性PLGA和PLA-TPGS聚合物.  相似文献   

3.
利用溶液法预先制备壳聚糖(Cs)-蒙脱土(MMT)复合材料(Cs-MMT),以Cs-MMT、Cs为原料,采用反相悬浮聚合法制得一种新型药物缓释体系阿司匹林-蒙脱土-壳聚糖载药微球(Asp-MMT-Cs)。采用FT-IR、SEM表征了Cs-MMT和Asp-MMT-Cs载药微球的结构及形态;设计正交实验优化了Asp-MMT-Cs载药微球的制备工艺;通过体外释放实验探讨了载药微球在不同模拟释放液中的释药规律。结果表明:所得微球球形度好,粒径分布较均匀;最优工艺制得的载药微球平均粒径为81.20μm,载药量为9.61%,包封率为76.78%。该缓释体系具有pH敏感性,更倾向于在pH较高的磷酸盐缓冲溶液中释放。  相似文献   

4.
壳聚糖修饰PLGA阳离子型纳米微球的制备与表征   总被引:6,自引:1,他引:6  
采用单乳化-溶剂(O/W)挥发技术制备表面带正电荷的壳聚糖(CHS)修饰聚乙/丙交酯(PLGA)纳米微球(PLGA/CHS), 通过正交试验优化了纳米微球的制备条件. 结果表明, 微球粒径可控制在150~200 nm内, 在pH=4时, 纳米微球表面电位最高为55 mV. 影响微球粒径的主要因素是聚合物的浓度, CHS的分子量和浓度以及介质的pH值对微球表面电位也有明显影响. 制备粒径较小而表面电位较高的PLGA/CHS纳米微球条件为: ρ(CHS)=3 mg/mL, ρ(PLGA)=10 mg/mL, Vo/Va=1/4. SEM图像显示经CHS修饰的PLGA的纳米微球形状规整, 荧光显微观察和XPS分析结果证实CHS包覆于微球表面.  相似文献   

5.
生物降解聚酯包埋利福平缓释微球的制备及释放行为   总被引:16,自引:0,他引:16  
以生物可降解乙交酯和丙交酯的无规共聚物(PLGA)为载体,将抗结核病药利福平溶解于PLGA的有机溶液中,采用通常乳化-溶剂挥发方法制备了药物缓释微球.研究了影响微球制备的工艺条件.用电子显微镜观察了微球及降解后的表面形态,测定了微球粒径及载药量,评价了载药微球的体外释放行为.结果表明,以质量分数为1%的明胶为稳定剂,制备的微球形态完整,粒径范围为10~30μm,微球中利福平的平均质量分数为24.3%.体外释药时间可以通过高分子的降解速率来调控,本实验的释药时间可以在42~84d之间调控,药物缓释达到了理想的零级动力学释放.因此,利福平PLGA微球具有显著的长效、恒量药物缓释作用.  相似文献   

6.
以自制阿司匹林为药物模型,壳聚糖(CS)为载体源,采用微乳液成核-离子交联法制备了阿司匹林/壳聚糖纳米缓释微球.分别用傅里叶变换红外(FTIR)光谱、场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)、动态激光光散射(DLLS)、X射线粉末衍射(XRD)等表征了纳米微粒的化学组成、外观形貌、平均粒径和粒径分布、微球中壳聚糖的晶体结构以及阿司匹林的分布形态.结果表明,利用微乳液成核-离子交联法制备的阿司匹林/壳聚糖微球平均粒径约为88nm且粒径分布均匀,成核后壳聚糖结晶形态基本未变,阿司匹林以分子形态分布于微粒中,分子间未形成堆砌,为无定形态.采用UV-Vis分光光度计考察了微球的药物包封率、载药量,并对微球在生理盐水和葡萄糖溶液中的释药行为进行跟踪.结果表明,微球的载药量可达55%,药物包封率可达42%,实验条件下具有较好的药物缓释作用.  相似文献   

7.
利用生物相容性良好的γ-聚谷氨酸(γ-PGA)和壳聚糖(CS)制备表面分别带正、负电荷的pH响应性纳米颗粒,并用其包载抗生素阿莫西林。利用动态光散射仪、傅里叶红外光谱仪、X射线衍射和透射电镜对载药纳米颗粒的结构和形貌进行表征,考察两种纳米载体的pH响应释放药物能力及其对细胞的毒性。研究结果表明,带负电荷的纳米颗粒显示出更好的pH响应控释药物的能力。在模拟胃部环境下,载药纳米颗粒的粒径大小稳定在200~300 nm,药物释放量仅为25%。在中性至弱碱性的肠道细胞间隙下,其粒径增大到1μm左右,药物释放量增加到85%。此外,细胞毒性实验表明该药物载体对细胞没有毒性,载药纳米颗粒对肠道细菌的抑制效果比游离药物的更好。  相似文献   

8.
利用湿化学法合成了具有光热效应的纳米硫化铜(Cu S)颗粒,采用沉淀聚合法,以N-异丙基丙烯酰胺(NIPAAm)和N-乙烯基吡咯烷酮(NVP)为共聚单体,锂藻土(laponite)作为交联剂,吸附纳米硫化铜,制备出兼具光热效应和温敏响应性的复合微凝胶[P(NIPAAm-co-NVP)/Cu S](NNC/Cu S),并测试其载药和药物缓释性能.实验结果表明,制备的纳米Cu S和NNC/Cu S复合微凝胶均在近红外区有很宽的光谱吸收带,在980 nm(0.51 W/cm2)激光的辐照条件下,NNC/Cu S复合微凝胶具有良好的光热效应,温度在8 min内可以升至51.9℃,对于Hela细胞杀伤效果明显,并随着激光照射时间的延长效果越好.复合微凝胶的载药量为0.15mg/mg,在p H=5.5的PBS缓冲液中累积药物释放为75%,高于p H=7.4的63%.同时光热效应对于温敏性载药微球的药物释放具有有效地调控作用,在药物释放阶段,激光照射段药物释放率明显高于未加激光照射段.另外聚合物与纳米Cu S的复合改善了纳米Cu S对于细胞的毒性,NNC/Cu S复合微凝胶细胞存活率为90.9%高于纳米Cu S的63%.  相似文献   

9.
玉米醇溶蛋白/壳聚糖复合纳米微球的制备及性能研究   总被引:1,自引:0,他引:1  
以生物相容性的玉米醇溶蛋白(Zein)和壳聚糖(Chitosan)为原料,利用溶剂-非溶剂相分离法成功制备了玉米醇溶蛋白/壳聚糖复合纳米微球(NSZ/CS),运用FT-IR、SEM和TEM等对复合纳米微球进行了表征。采用罗丹明B(RB)为模型药物分子,研究了复合纳米微球的药物释放性能。与玉米醇溶蛋白纳米微球(NSZ)相比,复合纳米微球NSZ/CS对RB和Dox·HCl的包封率显著上升,分别可达83.5%和75.3%。NSZ/CS对RB的累积释放量也大幅度提高。在模拟人工胃液和人工肠液中,NSZ/CS对RB释放36 h后,累积释放量分别为85.2%和95.4%。进一步将NSZ/CS用于负载抗癌药物盐酸阿霉素(Dox·HCl),发现Dox@NSZ/CS在p H=7.4的磷酸缓冲液(PBS)中的累积释放量达91.0%。复合纳米微球NSZ/CS有望作为水溶性药物载体应用于生物医药领域。  相似文献   

10.
多重响应性介孔二氧化硅纳米微球的制备及载药研究   总被引:2,自引:0,他引:2  
采用溶胶凝胶法制备了以油酸稳定的Fe3O4为核, 十六烷基三甲基溴化铵(CTAB)为模板剂的磁响应性的介孔二氧化硅纳米微球; 通过孔道内修饰羧基和巯基, 链转移反应修饰线性的聚(N-异丙基丙烯酰胺-co-N-羟甲基丙烯酰胺)共聚物得到多重响应性的介孔二氧化硅纳米微球P(NIPAM-co-NHMA)@M-MSN(-COOH). 利用Brunauer-Emmett-Teller (BET)、振动样品磁强计(VSM)、透射电子显微镜(TEM)、紫外光谱(UV/Vis)表征了微球的物理化学性质. 阿霉素(DOX)被用作模型药物研究了这种多重响应性的介孔二氧化硅纳米微球作为药物载体的载药及药物释放行为, 结果显示这种纳米微球载药率高达48%, 药物释放呈现对温度和pH的双重响应性, 可以实现对药物的控制释放.  相似文献   

11.
用溶胶-凝胶法以磷钼酸(MPA)的镍盐溶液水解钛酸四丁酯制备了NiPMo/TiO2催化剂.使用ICP、 XRD、 TG-DTA、 IR、 TPD-MS和微反应技术研究了催化剂的化学组成、热稳定性、化学吸附性质和催化反应性能.杂多钼酸盐与TiO2通过O2-在TiO2表面发生了键合.在623 K下,杂多阴离子仍保持原有的Keggin结构.CO2在Lewis酸位Ni(Ⅱ)和Lewis碱位Ni-O-Mo的桥氧协同作用下生成CO2卧式吸附态Ni(Ⅱ)←O-(CO)←(O--Ni).丙烯有多种吸附态在催化剂上吸附.在563 K、 1 MPa和空速1500 h-1的反应条件下,丙烯的摩尔转化率为3.2%,产物MAA选择性为95%.  相似文献   

12.
Different approaches for the synthesis of 1-benzyloxypyrazin-2(1H)-one derivatives from simple amino acids have been investigated. A library of 33 precursors for the preparation of N-hydroxy pyrazinones was obtained in moderate to good yields.  相似文献   

13.
A new and simple synthesis of novel N-protected methyl 5-substituted-4-hydroxypyrrole-3-carboxylates, which exist in equilibrium with their 4-oxo tautomers, has been developed in two steps starting from N-protected α-amino acids. The key intermediates are enaminones, which can also be isolated, characterized, and used for the construction of other functionalized heterocycles, before they spontaneously decompose to pyrrole products. 4-Hydroxypyrroles are prone to partial aerial oxidation but can be efficiently alkylated or reduced to stable polysubstituted pyrrolidine derivatives.  相似文献   

14.
The chemoselectivity in the intramolecular CH insertion of various diazosulfonamides has been experimentally studied. The results reveal that the aliphatic 1,4-, 1,5-, or 1,6-C(sp3)?H insertions of diazosulfonamides are not accessible, while the aromatic 1,5-C(sp2)?H insertion can be realized specifically by adjusting the diazo-adjacent group. In addition, the general chemoselectivities in the intramolecular CH insertions of diazosulfonyl compounds are summarized. Generally, diazosulfones undergo both aromatic 1,5-C(sp2)?H and aliphatic 1,5- and 1,6-C(sp3)?H insertions, while diazosulfonates undergo aliphatic 1,5- and 1,6-C(sp3)?H insertions. However, diazosulfonamides only undergo aromatic 1,5-C(sp2)?H insertion.  相似文献   

15.
A general synthesis of previously unknown semicarbazone-based α-amidoalkylating reagents, 4-(tosylmethyl)semicarbazones, has been developed. The synthesis involved three-component condensation of semicarbazones of aliphatic or aromatic aldehydes with the same or other aldehydes and p-toluenesulfinic acid. The scope and limitations of this reaction were investigated. The compounds obtained were demonstrated to be an efficient α-(4-semicarbazono)alkylating agents. They were reacted with H- (sodium borohydride), O- (sodium methylate), S- (sodium phenylthiolate), N- (pyrrolidine, sodium succinimide), P- (trialkyl phosphites), and C-nucleophiles (sodium diethyl malonate) to give the corresponding products of the tosyl group substitution, 4-substituted semicarbazones, including analogues of nitrofurazone. Among the prepared compounds tested in vitro for antibacterial and antifungal activity, three nitrofuryl-containing semicarbazones exhibited high biological activities with minimum inhibitory concentration (MIC) values of 8–32 μg/mL.  相似文献   

16.
In the context of the preparation of camptothecin and luotonin A analogs, the synthesis of some key keto-precursors and their use in Friedländer condensation are described. This paper also focuses on the stability of these keto intermediates and emphasizes the major differences between indolizinones and pyrroloquinazolinones series. Noteworthy is also the report of some original structures isolated as by-products of some experiments.  相似文献   

17.
A small library of new chiral bidentate hydroxyalkyl-imidazolium salts 1 is conveniently synthesized on multi-gram scale from inexpensive and commercially available chiral pool amino acids. The corresponding carbenes, generated by deprotonation of imidazolium salts 1, in combination with palladium(II) chloride were tested in the Mizoroki–Heck coupling reaction. The most significant results in terms of yields and reactivities were achieved with low catalyst loading. The catalytic activities of these imidazolium salts were also investigated in the asymmetric addition of diethylzinc to benzaldehyde. The use of MgO nanoparticles as an additive in conjunction with these ligands played a crucial role in increasing the efficiency of these reactions.  相似文献   

18.
N-Heterocyclic carbene-palladacyclic complexes 3 were successfully achieved in a one-pot procedure under mild conditions. The structure of 3a was unambiguously confirmed by X-ray single crystal diffraction and it was an active catalyst in the Buchwald-Hartwig amination and α-arylation of ketones even at very low catalyst loadings (0.01?mol%).  相似文献   

19.
An efficient iodine-mediated oxidative Pictet-Spengler reaction in dimethyl sulphoxide (DMSO) using terminal alkynes as the 2-oxoaldehyde surrogate for the synthesis of aryl (9H-pyrido[3,4-b]indol-1-yl)methanones is described. The scope of the protocol includes the total synthesis of Fascaplysin, Eudistomins Y1 and Y2. The methodology is extended for preparing pyrrolo[1,2-a]-quinoxaline and indolo[1,5-a]quinoxaline derivatives. The utility of 1-aroyl-β-carbolines was demonstrated by performing palladium-catalyzed β-carboline directed ortho-C(sp2)-H functionalization of the phenyl ring with thiomethyl (SMe) group using DMSO as source and for accessing 4-aryl-canthin-6-ones.  相似文献   

20.
The Langevin paramagnetic theory can’t describe the relation between magnetization of ferrofluids and applied magnetic field. The structuralization of ferrofluids, which is considered the main influence factor of the magnetization, is regarded. The part of magnetization works is deposited when the structure is forming. This action influences the magnetization of ferrofluids directly or indirectly. On the base of the “compressing” model, the Langevin function that usually describes the magnetization of ferrofluid is modified, and a well-fitted curve is obtained. An equation of the relation between the equivalent volume fraction after being “compressed” and the intensity of magnetic field is discovered, which approximately describes the process of magnetization. The relation between the approximate initial susceptibility and the volume fraction can be obtained from modified formula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号