首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
We present a novel scheme for reducing the AC Stark effect in optical-microwave double-resonance spectroscopy and its application for efficient suppression of the light-shift-related instabilities in laser-pumped gas-cell atomic clocks. The method uses a multi-frequency pump light field that can be easily produced by frequency modulation of the single-frequency pump laser. We show theoretically that variations of the light shift with both laser frequency and light intensity can be strongly suppressed with properly chosen pump light spectra. Suitable modulation parameters can be found for both the case of pure frequency modulation as well as for pump light spectra showing amplitude-modulation contributions, as usually found for current modulation of diode lasers. We experimentally demonstrate the method for a Rb atomic clock using a frequency-modulated distributed Bragg-reflector laser diode as pump light source.  相似文献   

2.
With ultracold 87Srconfined in a magic wavelength optical lattice, we present the most precise study (2.8 Hz statistical uncertainty) to date of the 1S0-3P0 optical clock transition with a detailed analysis of systematic shifts (19 Hz uncertainty) in the absolute frequency measurement of 429 228 004 229 869 Hz. The high resolution permits an investigation of the optical lattice motional sideband structure. The local oscillator for this optical atomic clock is a stable diode laser with its hertz-level linewidth characterized by an octave-spanning femtosecond frequency comb.  相似文献   

3.
在87Sr光晶格钟实验系统中,通过将自由运转的698 nm激光频率锁定在由超低膨胀系数的玻璃材料构成的超稳光学参考腔上,从而获得短期频率稳定性较好的超稳窄线宽激光.超稳光学参考腔的腔长稳定性决定了最终激光频率的稳定度.为了降低腔长对温度的敏感性,使激光频率具有更好的稳定度和更小的频率漂移,利用锶原子光晶格钟的钟跃迁谱线,测量了698 nm超稳窄线宽激光系统中超稳光学参考腔的零温漂点.通过对钟跃迁谱线中心频率随温度的变化曲线进行二阶多项式拟合,得到698 nm超稳窄线宽激光系统的零温漂点为30.63℃.利用锶原子光晶格钟的闭环锁定,测得零温漂点处698 nm超稳窄线宽激光系统的线性频率漂移率为0.15 Hz/s,频率不稳定度为1.6×10–15@3.744 s.  相似文献   

4.
We have measured the 1S-2S transition frequency in atomic hydrogen via two-photon spectroscopy on a 5.8 K atomic beam. We obtain f(1S-2S) = 2,466,061,413,187,035 (10) Hz for the hyperfine centroid, in agreement with, but 3.3 times better than the previous result [M. Fischer et al., Phys. Rev. Lett. 92, 230802 (2004)]. The improvement to a fractional frequency uncertainty of 4.2 × 10(-15) arises mainly from an improved stability of the spectroscopy laser, and a better determination of the main systematic uncertainties, namely, the second order Doppler and ac and dc Stark shifts. The probe laser frequency was phase coherently linked to the mobile cesium fountain clock FOM via a frequency comb.  相似文献   

5.
We report on studies on the light-shift in caesium miniature atomic clocks based on coherent population trapping (CPT) using a micro-fabricated buffer-gas cell (MEMS cell). The CPT signal is observed on the Cs D1-line by coupling the two hyperfine ground-state Zeeman sublevels involved in the clock transition to a common excited state, using two coherent electromagnetic fields. These light fields are created with a distributed feedback laser and an electro-optical modulator. We study the light-shift phenomena at different cell temperatures and laser wavelengths around 894.6?nm. By adjusting the cell temperature, conditions are identified where a miniature CPT atomic clock can be operated with simultaneously low temperature coefficient and suppressed light-shift. The impact of the light-shift on the clock frequency stability is evaluated. These results are relevant for improving the long-term frequency stability of CPT-based Cs vapour-cell clocks.  相似文献   

6.
We report a novel fiber laser operating at 850-nm band by using semiconductor optical amplifier and fiber grating. The laser system is stable, compact, and the operating wavelength can be tuned continuously from about 851 to 854 nm for Cs atomic clock system by stretching the fiber grating. An output power up to 20 mW is obtained with a signal-to-background ratio beyond 20 dB.  相似文献   

7.
We propose a new cesium (Cs) atomic clock whose microwave source is a 9.1926-GHz harmonically and regeneratively mode-locked erbium fiber laser rather than a quartz oscillator and a multiplexer. The repetition rate of the laser is directly locked to the Cs resonance, and the frequency stability evaluated by the Allan variance is 7.1 x 10(-12) for tau = 1 s. This new atomic clock provides not only a precise 1-s time standard after demultiplexing but also an optical pulse train with the same stability, which means that the ultrastable clock signal can be delivered throughout the world by means of optical fiber networks.  相似文献   

8.
The dressing of atomic states in a strong laser field modifies the structure of the incoherently scattered fraction of the laser intensity, which is described to a good approximation by the Mollow spectrum. The incoherent spectrum is generated by the fluctuations of the atomic dipole moment about its expectation value, and the positions of the peaks are approximately given by the energy differences between the dressed atomic energy levels. In this paper, we investigate radiative corrections received by the dressed states. Our calculations are motivated by the quest to understand in detail the interplay of a bound electron dressed by the highly populated laser mode and its interaction with the vacuum modes. Alternatively, this may be seen as an electron experiencing modified stimulated and spontaneous radiative corrections in a vacuum tailored by the laser field. We obtain dressed self-energy shifts that depend on the Rabi flopping frequency (and in turn on the laser intensity) and on the detuning of the laser field relative to the atomic resonance frequency. We find that the dressed radiative corrections differ in a nontrivial manner from the radiative shifts of the ‘bare’ atomic states.  相似文献   

9.
An optical flequency comb phase-locked on an iodine frequency stabilized diode laser at 634 nm is constructed to transfer the accuracy and stability from the optical domain to the radio frequency domain. An external-cavity diode laser is frequency-stabilized on the Doppler-free absorption signals of the hyperfine transition R(80)8-4 using the third-harmonic detection technique. The instability of the ultra-stable optical oscillator is determined to be 7 ×10^-12 by a cesium atomic clock via the optical frequency comb's mass frequencv dividing technique.  相似文献   

10.
张曦  刘慧  姜坤良  王进起  熊转贤  贺凌翔  吕宝龙 《物理学报》2017,66(16):164205-164205
为了获得高稳定度和高精确度的原子光晶格钟,光晶格场的频率必须得到锁定,线宽必须控制到特定水平用来消除交流斯塔克频移.本文提出利用传输腔技术来实现对镱原子光钟的光晶格场的频率锁定和抑制频率长期漂移的锁定方案.首先,将一个殷钢材料的传输腔锁定在基于调制转移谱技术锁定的780 nm激光场上,再将759 nm的光晶格光场锁定在传输腔上.实验结果表明,光晶格光场的线宽可以锁定和控制在1 MHz以下.光晶格光场与锁定于氢钟的光梳拍频结果显示,光晶格光场的长期频率稳定度优于3.6×10~(-10),可以确保实现镱原子光钟的不确定度进入10~(-17).  相似文献   

11.
We discuss the prospect of using the 87Sr+ ion as an optical frequency standard. The ion offers a narrow electric quadrupole clock transition which has no first-order Zeeman shifts, and the required wavelengths can be generated with convenient solid-state laser systems. We describe how to cool and probe the ion in zero magnetic field by employing polarisation modulation of the cooling light to avoid coherent population trapping in dark states. The polarisation modulation scheme also provides optical pumping of the ion into the initial state of the narrow clock transition.  相似文献   

12.
The absolute frequency of the In(+) 5s(2) (1)S(0)5s5p (3)P(0) clock transition at 237 nm was measured with an accuracy of 1.8 parts in 10(13). Using a phase-coherent frequency chain, we compared the (1)S(0)(3)P(0) transition with a methane-stabilized HeNe laser at 3.39 mum, which was calibrated against an atomic cesium fountain clock. A frequency gap of 37 THz at the fourth harmonic of the HeNe standard was bridged by a frequency comb generated by a mode-locked femtosecond laser. The frequency of the In(+) clock transition was found to be 1 267 402 452 899.92 (0.23) kHz, the accuracy being limited by the uncertainty of the HeNe laser reference. This result represents an improvement in accuracy of more than 2 orders of magnitude over previous measurements of the line and now stands as what is to our knowledge the most accurate measurement of an optical transition in a single ion.s.  相似文献   

13.
We describe an ultrastable cesium (Cs) atomic clock with a 9.1926-GHz regeneratively mode-locked fiber laser obtained by use of an optically pumped Cs beam tube. By adopting a 1-m-long Cs beam tube with a linewidth of 110 Hz, we have successfully obtained frequency stabilities of 4.8 x 10(-12) for tau = 1 s and 6.3 x 10(-13) for tau = 50 s for a 9.1926-GHz microwave output signal. This Cs atomic clock can generate an optical pulse train with the same stability as that of the obtained microwave, which allows us to deliver a frequency standard optical signal throughout the world by means of optical fiber networks.  相似文献   

14.
屈求智  周子超  万金银  刘亮 《光学学报》2008,28(7):1390-1394
利用托曼光场代替喷泉原子钟的微波腔实现拉曼喷泉原子钟.将分离托曼光场技术与冷原子喷泉技术相结合.避免了存真空腔内放置微波腔,简化了真空系统.同时还保持了很高的准确度.采用半经典理论研究了冷原子喷泉与托曼光场的相互作用过程.得到了冉赛(Ramsey)条纹.比较了托曼喷泉原子钟与热铯束拉曼原子钟,前者有更小的体积和功耗,其精度可能达到或超过商用小铯钟.还比较了拉曼喷泉原子钟与微波喷泉原子钟的差别,分析了光子反冲的影响,提出利用同向传播和相向传播的两台拉曼原子钟测最精细结构常数.  相似文献   

15.
We report on an absolute frequency measurement of the hydrogen 1S-2S two-photon transition in a cold atomic beam with an accuracy of 1.8 parts in 10(14). Our experimental result of 2 466 061 413 187 103(46) Hz has been obtained by phase coherent comparison of the hydrogen transition frequency with an atomic cesium fountain clock. Both frequencies are linked with a comb of laser frequencies emitted by a mode locked laser.  相似文献   

16.
王倩  魏荣  王育竹 《物理学报》2018,67(16):163202-163202
介绍了喷泉频标的原理与发展.喷泉频标是一项近20年来发展起来的原子钟技术,它以激光冷却技术为基础,利用该技术实现了冷原子介质的俘获与上抛.冷原子介质在上抛下落过程中首先完成原子态制备,然后两次通过微波谐振腔实现Ramsey作用,在两次作用之间原子经历自由演化,最后原子经过探测区,通过双能级荧光探测法探测原子跃迁概率得到鉴频的Ramsey干涉条纹,并实现频率锁定,其中心条纹的线宽在1Hz左右.频率稳定度和频率不确定度是喷泉频标的两个重要指标.影响喷泉钟频率稳定度的因素主要有量子投影噪声和电子学噪声,目前喷泉钟的短期稳定度为(10~(-13)—10~(-14))τ~(-1/2),长期稳定度在(10~(-16)—10~(-17))量级.喷泉频标的频率不确定度主要受二阶塞曼频移、黑体辐射频移、冷原子碰撞频移以及与微波相关的频移等的影响.目前喷泉钟的不确定度在小的10~(-16)量级.作为基准频标,喷泉钟的工作介质主要是~(133)Cs,~(87)Rb.国际各大计量机构都研制了喷泉频标,它在各地协调世界时的建立、国际原子时的校准等方面发挥着越来越重要的作用.此外,喷泉频标还用于研究高精度时频基准和时间比对链路、验证基本物理理论等.  相似文献   

17.
A frequency comb is generated with a Cr:forsterite femtosecond laser, spectrally broadened through a highly nonlinear optical fiber to span from 1.0 to 2.2 ,m, and stabilized using the f-to-2f self-referencing technique. The repetition rate and the carrier-envelope offset frequency are stabilized to a hydrogen maser, calibrated by a cesium atomic fountain clock. Simultaneous frequency measurement of a 657-nm cw laser by use of the stabilized frequency combs from this Cr:forsterite system and a Ti:sapphire laser agree at the 10(-13) level. The frequency noise of the comb components is observed at 1064, 1314, and 1550 nm by comparing the measured beat frequencies between cw lasers and the supercontinuum frequency combs.  相似文献   

18.
刘畅  王延辉 《中国物理 B》2015,24(1):10602-010602
We are developing a compact rubidium atomic beam frequency standard with optical pumping and detection.The cavity for microwave interrogation is an important part of the clock.The cavity in our design is a Ramsey-type,E-bend one,which is the same as the conventional method in most cesium beam clocks.Requirements for the design are proposed based on the frequency shift associated with the cavity.The basic structure of the cavity is given by theoretical analysis and detailed dimensions are determined by means of electromagnetic field simulation with the help of commercial software.The cavity is manufactured and fabricated successfully.The preliminary test result of the cavity is given,which is in good agreement with the simulation.The resonant frequency is 6.835 GHz,equal to the clock transition frequency of87Rb,and the loaded quality factor is 500.These values are adjustable with posts outside the cavity.Estimations on the Ramsey line width and several frequency shifts are made.  相似文献   

19.
尹毅  张奕  谭伯仲  陈杰华  顾思洪 《物理学报》2015,64(3):34207-034207
通过微型原子蒸汽室产生质量满足要求的相干布居囚禁(CPT)信号是实现芯片原子钟的关键之一.本实验通过对光源实施频率调制和对光场与87Rb原子作用产生的信号作相敏解调获得高信噪比的CPT微分谱线, 利用CPT微分谱线研究了CPT信号随工作参数变化的规律以及信号质量对原子钟频率稳定度的影响, 所获研究结果与理论模型预期相符合, 实验结果为芯片原子钟推荐了最佳工作参数.实验所采用的方法利用芯片原子钟自身的资源就可以实施, 因此为芯片原子钟开展性能研究和实施工作参数优化提供了实用的手段.  相似文献   

20.
We measure a cold collision frequency shift in an 87Rb fountain clock that is fractionally 30 times smaller than that for Cs. The shift is -0.38(8) mHz for a density of 1.0(6)x10(9) cm(-3). We study the cavity pulling of the atomic transition and use it to cancel the cold collision shift. We also measure the partial frequency shifts of each clock state finding 2(lambda(10)-lambda(20))/(lambda(10)+lambda(20)) = 0.1(6).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号