首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 286 毫秒
1.
使用一定配比的乙酰丙酮,无水乙酸钠,三氯化铁合成的乙酰丙酮铁作为前驱体材料,采用水热法在不同温度条件下反应两小时合成α-Fe2O3,从而探寻光催化效率最佳反应条件。利用X-射线粉末衍射仪(XRD),场发射扫描电子显微镜(TEM),紫外可见漫反射光谱仪(UV-vis DRS),比表面积测试(BET),拉曼光谱(Raman spectra)等对材料进行表征分析。分析结果表明在同等情况下175°C下合成的α-Fe2O3还原六价铬的反应速率高于其他温度下合成的α-Fe2O3光催化速率。  相似文献   

2.
非晶态δ-FeOOH液相合成纳米级α-Fe2O3粉体的历程研究   总被引:6,自引:0,他引:6  
孟哲  贾振斌  魏雨 《化学学报》2004,62(5):485-488
以非晶态δ-FeOOH为前驱物的弱酸性悬浮液,液相快速合成粒径小于25 nm、准球形、高纯度α-Fe2O3粉体.结合XRD, FTIR, TEM, TG/DTA和粒度分析等测试手段,对δ-FeOOH液相相转化为α-Fe2O3过程中产物的物相、结构及形貌进行了表征.研究结果表明,非晶态δ-FeOOH属亚稳相,容易向稳定相α-Fe2O3及α-FeOOH转化,而α-FeOOH在沸腾回流中会自发地转化为α-Fe2O3.  相似文献   

3.
陈嘉宁  刘永梅 《燃料化学学报》2013,41(12):1488-1494
采用典型方法制备了不同Fe、Mn、K比例的铁基催化剂,利用X射线粉末衍射、N2吸附/脱附、扫描电镜、拉曼光谱、H2-TPR等手段对催化剂进行了表征,并考察了催化剂对CO加氢制低碳烯烃反应的催化性能。结果表明,Mn能有效促进活性相分散,抑制碳链增长,但Fe-Mn强相互作用不能有效增加低碳烃烯/烷比,α-Fe2O3作为活性铁物种前驱体对烯烃生成反应更加有利。K通过减少Mn以氧化物形式出现,增加FeMn化合物晶格缺陷,从而最终使Fe-Mn-K催化剂低碳烯烃收率显著高于Fe-Mn和Fe-K体系。  相似文献   

4.
采用原位光沉积-煅烧法制得了Z型α-Fe2O3/g-C3N4异质结复合光催化剂。分别采用透射电子显微镜、X射线衍射、X射线光电子能谱、紫外可见漫反射光谱、荧光光谱以及电化学测试对样品进行了表征,并考察了可见光下光解水产氢活性。结果表明:当α-Fe2O3的负载量为2.9%时,α-Fe2O3/g-C3N4复合光催化剂具有最优的产氢催化活性,产氢速率高达1841.9μmol·g-1·h-1,约为g-C3N4的3.3倍。光催化性能的提高主要归因于3方面:(1)高温煅烧过程中α-Fe2O3的形成,有效促进了氮化碳片层的热剥离,增大了比表面积,从而为光催化反应提供了更多反应活性位;(2)超细α-Fe2O3颗粒(5~8 nm)高度均匀地分散在g-C3N4表面,并且与其紧密结合,形成了高质量的Z型异质结;(3)Z型异质结不仅有效抑制地了光生载流子的复合,同时极大地保留了g-C3N4导带电子的强还原性和α-Fe2O3价带空穴的强氧化性。  相似文献   

5.
郭湾  胡聪意  甄淑君  黄承志  李原芳 《化学学报》2022,80(12):1583-1591
光催化剂在工业废水处理中发挥着重要作用. 本工作以室温下一步合成的片状铁基金属有机凝胶(Fe-based Metal-organic gel, Fe-MOG)为前驱体, 在不同温度下煅烧得到了片状(300-Fe2O3和400-Fe2O3)和球形(500-Fe2O3和600-Fe2O3)两种形貌的衍生三氧化二铁(Fe2O3). 通过一系列测试手段对衍生Fe2O3的晶体结构和光电性能进行了表征. 其中, 具有碳骨架结构的400-Fe2O3因其优良的电子传输性能和较高的光生电荷分离效率表现出优异的光催化活性, 可在中性条件下60 min内光降解97.5%的罗丹明B (Rh B), 并且在连续五次循环实验后其降解效率仍能达到85.3%. 本工作为开发和设计具有优异催化活性的半导体光催化剂提供了新的思路.  相似文献   

6.
本研究以共沉淀法制备的α-Fe2O3催化剂为前驱体,通过调变碳化温度和碳化时间制备了不同物相组成的系列催化剂,采用XRD、M?ssbauer谱、XPS和Raman光谱等技术考察了催化剂体相和表面物相组成,在此基础上研究了不同条件下(不同CO转化率和H2O分压)催化剂的物相组成与催化剂性能之间的关系,重点探究了费托合成条件下CO2生成的活性相。结果表明,升高碳化温度和延长碳化时间有利于Fe3O4向碳化铁转变。在典型的费托合成条件下,催化剂的活性受到碳化铁含量和积炭程度的共同影响。当H2O分压较低时,动力学因素限制了水煤气变换(WGS)反应的进行,CO2选择性仅受CO转化率的影响,Fe3O4含量变化对CO2选择性无明显影响;而在较高的H2O分压下,随着催化剂中Fe3O4含量增加,CO  相似文献   

7.
Mg-Fe尖晶石复合氧化物对苯乙烯选择氧化反应的催化性能   总被引:8,自引:0,他引:8  
马宁  乐英红  华伟明  高滋 《化学学报》2004,62(3):262-267
研究了以H2O2为氧化剂时Mg-Fe尖晶石复合氧化物催化剂对苯乙烯选择氧化制苯甲醛反应的催化性能.结果表明,非化学计量比的Mg-Fe尖晶石复合氧化物催化剂的活性优于纯MgFe2O4尖晶石相,苯甲醛产率达到20%左右.在非化学计量比的Mg-Fe尖晶石复合氧化物中掺入适量的Al3+后,可进一步提高催化活性,苯甲醛最高产率达到33.4%.催化剂表征数据揭示,非化学计量比的Mg-Fe和Mg-Fe-Al复合氧化物催化剂是由纳米尺度的铁酸盐尖晶石和α-Fe2O3微晶相构成的.除了非化学计量比尖晶石具有较多的缺陷结构外,α-Fe2O3微晶相的存在也可能是造成非化学计量比催化剂活性高的原因之一.  相似文献   

8.
通过原位共沉淀的方法在γ-Al2O3表面上合成了Ni-Mg-Al-LDHs (水滑石), 合成的Ni-Mg-Al-LDHs/γ-Al2O3作为催化前驱体经过不同的热处理还原方式得到催化剂Cat-1、Cat-2和Cat-3. 用X射线衍射(XRD)、透射电镜(TEM)、N2吸附-脱附测试(BET)以及热重-差热分析(TG-DTA)对催化剂的形貌结构和抗积碳能力进行了表征测试; 通过甲烷二氧化碳重整反应体系对催化剂的反应活性和稳定性进行了评价. 结果表明催化剂前驱体的预处理方式对催化剂的反应性能具有较大的影响. Ni-Mg-Al-LDHs/γ-Al2O3 直接经过H2/Ar 常压高频冷等离子体炬的分解还原所获得的催化剂Cat-3 表现出了最佳的催化活性和稳定性. TEM表征表明催化活性组分在Cat-3上的分散性更好, 颗粒粒径更小. BET结果证明Cat-3具备较大的比表面积(195.8 m2·g-1). Ni-Mg-Al 水滑石的结构赋予了催化剂活性组分在载体γ-Al2O3上均匀的分散性, 同时常压高频冷等离体炬对催化剂的表面结构以及活性组分的还原具有进一步的优化作用, 两者的协同作用使Ni-Mg-Al-LDHs/γ-Al2O3在甲烷二氧化碳反应体系中具备优良的催化活性和抗积碳性能.  相似文献   

9.
以2-氨基对苯二甲酸(H2ATA)为配体,通过溶剂热法合成了Zr基MOF:NH2-Ui O-66,继而以氯化钨为前驱体,通过溶剂热法实现了富含氧空位的缺陷氧化钨(W18O49)在NH2-Ui O-66上的原位生长,构建了具有典型Ⅱ型异质结的复合光催化剂W18O49/NH2-Ui O-66。通过粉末X射线衍射、扫描电子显微镜、X射线光电子能谱和紫外可见漫反射光谱对催化剂的组成与结构进行了表征。在室温常压、模拟太阳光下,以氧化苯乙烯为模型底物,对所有样品的光催化活性进行了考察,W18O49/NH2-Ui O-66展现了最高的碳酸苯乙烯酯产率(58 mmol·g-1·h-1)。  相似文献   

10.
通过可控的水热生长方法和钴铁碳酸根氢氧根水合物的焙烧在泡沫铁上制备了CoFe2O4纳米阵列催化剂。通过粉末X射线衍射,扫描电镜和电感耦合等离子体发射光谱表征了CoFe2O4纳米阵列的晶相,结构和组成。制备的催化剂被用于费托合成性能研究。CoFe2O4纳米阵列催化剂在5L/(g·h)的空速下具有69%的转化率,并且其性能优于粉体催化剂。  相似文献   

11.
以硝酸铋为原料,氨水为沉淀剂,通过液相沉淀法制得前驱体Bi(OH)3,并将Bi(OH)3分别在不同温度和时间下焙烧。利用X射线衍射(XRD)、拉曼光谱、热重(TG)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)及紫外-可见漫反射光谱(UV-Vis DRS)详细研究了Bi(OH)3转变为Bi2O3的过程及相变过程中粒子形貌、大小、光吸收性质等。结果表明,前驱体Bi(OH)3经过焙烧之后,发生了如下的转变过程:Bi(OH)3→Bi5O7NO3β-Bi2O3/Bi5O7NO3β-Bi2O3/Bi5O7NO3/α-Bi2O3α-Bi2O3,而且转变过程伴随着粒子长大。在上述转变过程中,与Bi5O7NO3β-Bi2O3转变的过程相比,从β-Bi2O3α-Bi2O3相变过程更为迅速。此外,以光催化降解罗丹明B(RhB)为模型反应,考察了不同晶相的Bi2O3光催化活性,结果表明Bi5O7NO3β-Bi2O3材料具有优异的光催化性能,而α-Bi2O3具有较低的光催化活性。  相似文献   

12.
何杰  范以宁 《物理化学学报》2011,27(10):2416-2420
以草酸铌为前驱物,四方相氧化锆(t-ZrO2)为载体,通过浸渍法制备不同负载量的Nb2O5/t-ZrO2催化剂.采用粉末X射线衍射(XRD)、激光拉曼光谱(LRS)、紫外-可见漫反射光谱(UV-Vis DRS)等技术对t-ZrO2表面Nb2O3分散状态进行表征;采用异丁烯(IB)与异丁醛(IBA)缩合生成2,5-二甲基-2,4-己二烯(DMHD)反应评价不同负载量的Nb2O5/t-ZrO2的催化性能,采用吡啶吸附红外(Py-IR)光谱表征催化剂Bronsted酸中心特征.结果表明,由XRD定量相分析方法测定的Nb2O5在t-ZrO2表面单层分散容量与"嵌入模型"预测值接近.Nb2O5/t-ZrO2表面Bronsted酸中心特征与Nb2O5聚集状态密切相关.  相似文献   

13.
构建具有高效电荷迁移效率和丰富活性位点的异质结光催化体系是提升光芬顿反应速率的有效途径。本研究通过简单的水热法合成了2D/2D结构的α-Fe2O3/g-C3N4 S型异质结光芬顿催化剂,并使用X射线衍射仪技术(XRD)、透射电子显微镜(TEM)、傅立叶变换红外吸收光谱(FTIR)和紫外-可见吸收光谱(UV-Vis)等分析手段对α-Fe2O3/g-C3N4的晶体结构、微观结构、化学组分和光学性质进行了详细的表征。通过在可见光照射下降解四环素,评测了α-Fe2O3/g-C3N4的催化活性。结果表明,光催化反应与芬顿反应的协同作用使α-Fe2O3/g-C3N4 (1 : 1)展现出了优异的光芬顿催化活性:在可见光照射下,仅加入微量的双氧水便可辅助催化剂在20 min内对四环素的降解率达到78%,其降解速率分别是单一的α-Fe2O3和g-C3N4的3.5倍和5.8倍。α-Fe2O3/g-C3N4复合材料优异的催化活性得益于在2D/2D S型电荷迁移机制上构建的光芬顿催化体系。2D/2D S型异质结能够显著促进电子和空穴的传输与分离,并为催化剂提供较大的比表面积和丰富的活性位点,同时还能保持复合材料最佳的氧化还原能力。此外,光催化反应促进了Fe3+的还原,从而加速了芬顿反应中羟基自由基的产生。总之,本研究为构建高效、稳定的光芬顿催化体系提供了一条简单有效的途径。  相似文献   

14.
采用浸渍法和原位生长水滑石法制备了Ni-Ce/γ-Al2O3和Ni-Ce-LDHs/γ-Al2O3 2种不同类型的催化剂前驱体, 考察了2种前驱体分别经氩-氢等离子体和常规氢热方法还原所得催化剂在CO2甲烷化反应中的活性. 结果表明, 等离子体还原催化剂的低温活性明显高于常规氢热还原催化剂, 主要表现为前者反应启动的临界温度点比后者低20~30 ℃. 采用X射线衍射(XRD)分析、 透射电子显微镜(TEM)、 CO2程序升温脱附(CO2-TPD)以及X射线光电子能谱(XPS)对所得催化剂的形貌和结构进行了表征. 结果表明, 等离子体还原催化剂具有较小的活性组分粒径、 较高的活性组分分散度以及较高的表面碱性, 这些特性有利于催化剂活性位对CO2的化学吸附, 使其在甲烷化反应中表现出较好的低温活性.  相似文献   

15.
采用油酸铁热分解法制备出不同尺寸(4-19 nm)的γ-Fe2O3纳米颗粒,在350℃下,于5%CO/He、 5%CO/10%H2/He和5%CO/20%H2/He的三种气氛中,使用原位XRD反应装置研究了γ-Fe2O3纳米颗粒的碳化过程与物相变化规律,同时结合Raman、CO-TPR和TEM等手段对样品进行了表征。结果表明,γ-Fe2O3纳米颗粒完全碳化后会形成稳定比例的χ-Fe5C2和θ-Fe3C的混合相;在相同碳化气氛下,随γ-Fe2O3颗粒尺寸增大完全碳化所需时间缩短,尺寸较小的γ-Fe2O3颗粒表面残留炭较多,会抑制碳化反应进程,碳化相中θ-Fe3C相对含量随γ-Fe2O3纳米颗粒尺寸增大而增高;相同尺寸的γ-Fe2  相似文献   

16.
采用低温N2吸附、XRD、MES、CO-TPR和H2-DTG研究了Zn(100 gFe/x gZn, x=7~100)助剂对 Fischer-Tropsch (F-T) 合成Fe基催化剂的织构性质、还原行为以及相变结构的影响;在H2/CO=2.0、260 ℃、1.5 MPa和4000 mL/(g·h) 条件下在固定床反应器上考察了Zn助剂含量对Fe基催化剂F-T合成反应活性、烃产物选择性和运行稳定性的影响。研究结果表明,随着Zn含量的增加,氧化态催化剂的物相由α-Fe2O3和ZnFe2O4逐渐向ZnFe2O4和ZnO转变,ZnFe2O4在催化剂中优先生成,只有在超出其计量比1∶2之后才有ZnO出现。由于ZnFe2O4较为稳定,能够促进催化剂中Fe物相的分散,导致比表面积增加。在还原和反应态催化剂中,ZnFe2O4一方面抑制催化剂的过度还原和碳化;另一方面表现为稳定活性相铁碳化物。催化剂的F-T反应性能评价结果表明,纯铁催化剂由于铁碳化物氧化而迅速失活,而Zn助剂催化剂却由于ZnFe2O4的稳定作用,活性较为稳定。同时,由于催化剂在反应初相变的影响,导致Zn助剂催化剂的初始烯烃选择性随着Zn含量的增加而增加,在相态稳定之后选择性趋于一致。  相似文献   

17.
采用共沉淀-微波热解法,制备一系列Sn、Ti掺杂改性γ-Fe2O3催化剂样品(γ-Fe0.95Ti0.05Oz、γ-Fe0.95Sn0.05Oz、γ-Fe0.95Sn0.025Ti0.025Oz),研究Sn、Ti掺杂对γ-Fe2O3催化剂SCR脱硝活性的影响,借助XRD、N2吸附-脱附、EDS及SEM等手段对催化剂晶相、孔结构、表面元素及微观形貌等进行表征分析。结果表明,Sn、Ti掺杂后以无定形态高度分散于γ-Fe2O3晶格中,与Fe形成固溶体;单一助剂Ti掺杂制得的γ-Fe0.95Ti0.05Oz 最高脱硝效率达98.3%,且在250~400 ℃脱硝效率保持90%以上;Ti掺杂可以细化γ-Fe2O3晶粒,优化2~100 nm孔径孔隙结构,抑制α-Fe2O3的生成,促使γ-Fe2O3形成细致、均匀、独立的球状颗粒,对SCR反应有利;Sn掺杂则使催化剂出现严重烧结现象,导致2~6 nm孔径孔结构贫乏,对SCR脱硝反应不利;在Sn、Ti协同作用下,催化剂表面氧铁原子物质的量比由1.83降至1.33,表面晶格氧显著下降,一定程度上限制了SCR反应速率的提高。  相似文献   

18.
分别在空气和氮气中对水热制备的薄膜进行热处理获得了纳米棒状α-Fe2O3光阳极。对样品分别进行了X射线衍射(XRD)、扫描电镜(SEM)、X射线光电子能谱(XPS)、紫外-可见吸收光谱和光电化学性能测试。与空气热处理获得的α-Fe2O3Air光阳极相比,氮气气氛热处理获得的α-Fe2O3光阳极正面光照电流密度显著提升达到0.42mA·cm-2。正面光照下,α-Fe2O3N2光阳极的体内电荷分离效率ηbulk和表面电荷注入效率ηsurface都有较大增加,说明N2热处理明显增加了α-Fe2O3膜的载流子浓度,增强了体内载流子的传输和表面载流子注入效率。  相似文献   

19.
负载型纳米金催化剂由于其独特的化学性质在一系列氧化反应中受到广泛关注.其中,一氧化碳氧化不仅在实际应用领域(如汽车尾气处理)发挥重要作用,而且作为一种理想的模型反应用以深入研究和理解催化剂的构效关系.为了获得高效的纳米金催化剂,我们需要把金负载到载体上,载体不仅为金的分散提供必要的表面,而且还会和金产生相互作用,这种金属-载体相互作用对金的氧化态,金颗粒大小及其热稳定性均有重要影响.金属氧化物是负载金最常用的载体.为了提高纳米金催化剂的性能,需要调变金属氧化物的性质.常用的策略是调控金属氧化物的组成、晶相以及晶粒大小.此外,对金属氧化物的形貌进行精细调控也是一种重要的方法,因为具有不同形貌的氧化物可能会暴露出不同的晶面,而且可能具有不同的缺陷位点.α-Fe2O3是一种热稳定性强而且对环境友好的载体,可是有关其形貌对负载金催化剂在一氧化碳氧化反应中性能影响的研究尚不充分.因此,本文采用水热法合成了具有纳米球和纳米棒两种形貌的氧化铁,并采用沉积-沉淀的方法将金纳米颗粒负载于其表面.高分辨透射电镜照片显示,和氧化铁纳米球(α-Fe2O3(S))相比,氧化铁纳米棒(α-Fe2O3(R))的表面更为粗糙,具有更多的缺陷位点.Au和α-Fe2O3(R)之间有更强的金属载体相互作用,导致纳米棒氧化铁上的金纳米颗粒更小而且多呈半球形.相比之下,纳米球氧化铁上的金纳米颗粒较大,多呈球形,且分布不均匀.反应结果表明,Au/α-Fe2O3(R)具有更高的一氧化碳氧化活性.对反应后的催化剂进行表征发现,Au/α-Fe2O3(R)上金颗粒烧结程度较低,平均粒径从1.5增至2.4 nm,而Au/α-Fe2O3(S)上金颗粒烧结较为严重,平均粒径从2.0 nm增加到4.0 nm.氢气程序升温还原结果表明,Au/α-Fe2O3(R)具有更强的还原性,这也促进了其催化活性的提高.  相似文献   

20.
采用两步法合成了γ-Fe2O3/Ag/TiO2复合光催化剂, 以大肠埃希氏菌(E. coli)为目标菌, 对数去除率为评价指标评价了催化剂的抗菌性能, 优化了催化剂的最佳制备参数. 通过X射线衍射、 扫描电子显微镜、 X射线光电子能谱和紫外-可见漫反射光谱等手段对催化剂进行了表征. 结果表明, 当Ti/Ag摩尔比为1:0.05, 煅烧时间为3 h, 煅烧温度为350 ℃时, γ-Fe2O3/Ag/TiO2表现出最佳抗菌活性. 复合催化剂具有介孔结构, 比表面积为89.1 m2/g; 光吸收边界达690 nm, 有良好的可见光响应能力; 磁性较强, 在水处理应用中可有效分离和重复使用. 反应条件不受光源限制, 在有/无光照下均具有良好的抗菌活性, 且太阳光辐照下对E. coli的对数去除率可达6.28.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号