首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用静电纺丝法制备了PVP/FeC6H5O7复合纳米纤维, 并将复合纤维在500 ℃高温烧结3 h, X射线衍射分析(XRD)表明, 烧结后的产物为正尖晶石结构的γ-Fe2O3晶体. 扫描电子显微镜(SEM)观测结果表明, 制得了直径均匀、 连续的复合纳米纤维, 其平均直径约为1000 nm; 烧结后的γ-Fe2O3纳米纤维保持了其连续性, 但纤维发生了收缩, 直径较烧结前小, 平均约为600 nm. 比表面积分析表明, γ-Fe2O3纳米纤维比表面积为57.18 m2/g. 气敏性能测试结果表明, 230 ℃为γ-Fe2O3纳米纤维检测丙酮气体的最佳工作温度. 在此温度下, γ-Fe2O3纳米纤维对丙酮气体表现出高响应度[S=6.9, c(Acetone)=7.88×104 mg/m3]和线性度(7.88×102~1.58×105 mg/m3浓度范围内). 同时, γ-Fe2O3纳米纤维气体传感器件还表现出良好的长期稳定性.  相似文献   

2.
采用溶胶凝胶法制备了一系列不同TiO2含量的TiO2-Al2O3复合载体,并通过浸渍法制备了NiO/TiO2-Al2O3催化剂。分别考察了不同TiO2含量的NiO/TiO2-Al2O3催化剂及反应温度对CO甲烷化催化性能的影响。实验结果表明,当复合载体中TiO2质量分数为30%,反应温度为350~450 ℃时,催化剂催化活性较高。利用N2吸附-脱附(BET)、X射线衍射(XRD)及H2程序升温还原(H2-TPR)等手段对催化剂物化性能进行了表征。结果表明,加入适量的TiO2能抑制镍铝尖晶石NiAl2O4物种的生成,改善NiO的表面分散性能,避免大晶粒NiO的形成,也改善了催化剂的还原性能,从而提高催化剂的CO甲烷化活性。  相似文献   

3.
采用溶胶凝胶法制备了不同γ-Al2O3含量的钛铝复合载体,以此为载体采用浸渍法负载V2O5和WO3制备了一系列催化剂。采用X射线衍射(XRD)、比表面积测定(BET)、程序升温还原(H2-TPR)、高分辨率透射电子显微镜(HRTEM)等表征技术对催化剂表面形态进行分析,同时在模拟氨气选择性催化还原NO(NH3-SCR)的反应条件下,对催化剂的脱硝反应活性和SO2抗中毒进行考察。结果发现,TiO2和γ-Al2O3之间的协同作用使得V2O5-WO3/TiO2-γ-Al2O3催化剂的脱硝效率及活性窗口明显优于单一载体制备的催化剂,表现出了良好的热稳定性和抗SO2毒化能力,特别是V2O5-WO3/TiO2-15% γ-Al2O3在310~460 ℃,NO的转化率均在80%以上,反应窗口最宽。各种表征结果表明,TiO2-γ-Al2O3复合载体中γ-Al2O3高度分散在TiO2上,复合载体具有较大的比表面积,同时具有较强的还原能力。  相似文献   

4.
以聚苯乙烯(PS)胶球为模板, 通过一步法结合煅烧后处理制备了空心球复合材料In2O3/ZrO2-TiO2. 采用X射线衍射(XRD)、 X射线光电子能谱(XPS)、 扫描电子显微镜(SEM)、 紫外-可见漫反射吸收光谱(UV-Vis DRS)和氮气吸附-脱附等测试手段对复合材料的结构、 组成和形貌进行了表征. 结果表明, In2O3/ZrO2-TiO2复合材料的晶型结构以锐钛矿型TiO2为主, 同时存在少量含有Ti—O—Zr键的混合氧化物. 该复合材料经聚苯乙烯模板处理后呈现空心球状结构, 球壁由纳米粒子堆积而成. In2O3/ZrO2-TiO2空心球复合材料的比表面积较大(66.92 m2/g), 且In2O3与ZrO2-TiO2复合后光吸收发生了红移. 对该复合材料光解水制氢性能的研究结果表明, 空心球状In2O3/ZrO2-TiO2具有较好的产氢效果(56.7 μmol/g, 8 h), 明显高于P25、 ZrO2、 空心球状ZrO2-TiO2及粉末状In2O3/ZrO2-TiO2.  相似文献   

5.
采用原位光沉积-煅烧法制得了Z型α-Fe2O3/g-C3N4异质结复合光催化剂。分别采用透射电子显微镜、X射线衍射、X射线光电子能谱、紫外可见漫反射光谱、荧光光谱以及电化学测试对样品进行了表征,并考察了可见光下光解水产氢活性。结果表明:当α-Fe2O3的负载量为2.9%时,α-Fe2O3/g-C3N4复合光催化剂具有最优的产氢催化活性,产氢速率高达1841.9μmol·g-1·h-1,约为g-C3N4的3.3倍。光催化性能的提高主要归因于3方面:(1)高温煅烧过程中α-Fe2O3的形成,有效促进了氮化碳片层的热剥离,增大了比表面积,从而为光催化反应提供了更多反应活性位;(2)超细α-Fe2O3颗粒(5~8 nm)高度均匀地分散在g-C3N4表面,并且与其紧密结合,形成了高质量的Z型异质结;(3)Z型异质结不仅有效抑制地了光生载流子的复合,同时极大地保留了g-C3N4导带电子的强还原性和α-Fe2O3价带空穴的强氧化性。  相似文献   

6.
以硝酸银、钛酸四丁酯、无水氯化锌、六水氯化铁为原料,采用溶胶-凝胶法与溶剂热相结合的方法制备了ZnFe2O4/Ag/TiO2复合材料,通过扫描电子显微镜、能谱分析仪、X射线粉末衍射仪、X射线光电子能谱仪、振动样品磁强计、紫外可见分光光度计对样品进行表征及测试。结果表明:ZnFe2O4/Ag/TiO2-10具有最佳的光催化效果,在紫外和可见光下对染料的降解率都能达到90%以上,具有优异的紫外可见光光催化活性。ZnFe2O4/Ag/TiO2具有独特的磁性,能在外部磁场作用下进行回收利用,这使其在实际应用中成为可能。通过磁分离技术重复回收利用5次后仍然保持优良的光催化性能,说明ZnFe2O4/Ag/TiO2-10具有优异的磁性及较高的光催化循环稳定性。  相似文献   

7.
采用共沉淀法,在不同煅烧温度下制备一系列Mn改性γ-Fe2O3催化剂(Fe0.7Mn0.3Oz),研究了煅烧温度对Fe0.7Mn0.3Oz催化剂低温SCR脱硝活性的影响,并借助XRD、N2吸附-脱附、EDS及SEM等手段对催化剂进行表征。结果表明,350 ℃煅烧所得Fe0.7Mn0.3Oz催化剂的低温SCR活性最佳,在70 ℃时取得92%的NOx转化率,100~200 ℃可维持100%的NOx转化率,而450 ℃煅烧所得催化剂的低温SCR活性最低;煅烧温度为350 ℃时,催化剂具有最大的比表面积和比孔容、发达的孔隙结构及适当结晶度的γ-Fe2O3,而煅烧温度为400或450 ℃时,催化剂发生烧结且有α-Fe2O3生成,不利于低温SCR反应的进行,因此,Fe0.7Mn0.3Oz催化剂的最佳煅烧温度为350 ℃。  相似文献   

8.
高梦语  姜东  孙德魁  侯博  李德宝 《化学学报》2014,72(10):1092-1098
以钛酸四正丁酯(TB),羧基改性的SBA-15 (COOH/SBA-15),尿素和AgNO3为原料,利用溶剂热及焙烧处理制得Ag/N-TiO2/SBA-15催化剂. 采用X 射线衍射(XRD),低温N2吸脱附,X 射线光电子能谱(XPS),紫外-可见漫反射光谱(UV-vis DRS),荧光(PL)光谱,电感耦合等离子体原子发射光谱(ICP)和元素分析(EA)等表征. 结果显示:Ag/N-TiO2/SBA-15样品具有介孔结构,TiO2以单一的锐钛矿晶型均匀的分散在载体表面,Ag以单质形态沉积在TiO2表面,N则掺入到TiO2晶格中,并以取代N(O-Ti-N)和间隙N(Ti-O-N)两种方式共存. Ag/N-TiO2/SBA-15催化剂中单质Ag既可以捕获光生电子提高量子效率,又促进了TiO2对可见光的吸收. N掺杂拓宽了TiO2吸收光谱的吸收范围,并且适量的N掺杂有助于光生电荷的分离,提高了光催化效率. 以光催化还原CO2为探针反应,考察了催化剂在可见光下的催化活性. 结果表明:Ag/N-TiO2/SBA-15系列催化剂均表现出了可见光催化还原CO2性能,发现当Ag的质量分数为2%,N与Ti的物质的量比为3时,催化剂光催化活性最佳,产物甲醇产量高达45.7 μmol·g-1·h-1.  相似文献   

9.
基于密度泛函理论的CASTEP模块研究了α, β, γ, δ, εη-Bi2O3晶型, 计算分析了其几何结构、 能带结构、 电子态密度和光学性质. 结果表明, α, εη相均为层状结构, 其中, αε相为单层—Bi—O—结构, 而η相为双层—Bi—O—结构; β, γδ相为—Bim—On—交错结构, 其中δ相交错尤为密集, 呈现导体特性. 各晶相的导带均由Bi 6p态构成, 价带由O2p态起主导作用. 电势电位分析结果表明, 6种晶相价带电位均在H2O/O2之下, 具有强氧化能力, 与实验报道的光催化氧化能力大小顺序γ-Bi2O3>β-Bi2O3>α-Bi2O3>δ-Bi2O3一致, 而导带还原电位低于H2/H2O, 预测纯Bi2O3很难具备催化产氢能力. 光学性质分析发现, γδ相的起始响应波长较大, 说明其应具备红外激发的性质. 这些结果可为获得偏红外激发和较宽光谱响应的Bi2O3材料研究提供理论基础, 为研发和应用Bi2O3及其复合物提供重要的指导.  相似文献   

10.
以静电纺丝技术制备的TiO2纳米纤维为基质,硝酸铋为铋源,KOH为矿化剂,成功制备了多异质结Bi2Ti2O7/TiO2/Bi4Ti3O12复合纳米纤维光催化剂。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、紫外可见漫反射光谱(UV-Vis DRS)等一系列表征,对其物相组成、微观形貌和光学性质等进行分析。结果表明:TiO2纳米纤维的介入,将Ⅰ型异质结Bi2Ti2O7/Bi4Ti3O12分离为2个Ⅱ型异质结Bi2Ti2O7/TiO2和Bi4Ti3O12/TiO2。Bi2  相似文献   

11.
在150 ℃下, 仅以高锰酸钾溶液和无水乙醇为原料, 通过水热反应合成前驱体γ-MnOOH纳米棒. 以γ-MnOOH纳米棒为自牺牲模板, 分别在350和600 ℃下煅烧90 min, 制备出高纯度的β-MnO2α-Mn2O3纳米棒. 采用X射线粉末衍射(XRD)、 扫描电子显微镜(SEM)及热重分析(TGA)等对所制备的样品进行表征. 结果表明, 前驱物γ-MnOOH为高纯度的纳米棒状晶体, 直径约100~300 nm, 长度可达数微米, 且终产物β-MnO2α-Mn2O3均具有较高的纯度, 也很好地保持了前驱物的纳米棒状结构. 以二者为锰源, 通过固相反应合成出尖晶石LiMn2O4正极材料. 当充放电倍率为0.5 C时, 其首次放电比容量分别可达到120.4和123.9 mA·h/g, 而且表现出良好的循环性能和倍率性能.  相似文献   

12.
孟英爽  安逸  郭谦  葛明 《物理化学学报》2016,32(8):2077-2083
水热法结合原位沉淀法成功制备新型磁性溴化银/磷酸银/铁酸锌(AgBr/Ag3PO4/ZnFe2O4)复合催化剂,并通过X射线衍射、能量色散X射线、场发射扫描电子显微镜、透射电子显微镜和紫外-可见漫反射光谱对其晶相结构、组成、形貌及吸光性能进行了表征。在可见光照射下,所制备的AgBr/Ag3PO4/ZnFe2O4复合催化剂光催化降解罗丹明B (RhB)的活性优于Ag3PO4/ZnFe2O4、AgBr/ZnFe2O4和P25 TiO2。在酸性和碱性溶液中,AgBr/Ag3PO4/ZnFe2O4光催化剂呈现出优良光催化性能。在AgBr/Ag3PO4/ZnFe2O4体系中,光催化降解RhB的速率随着反应体系温度的升高而增大,由阿伦尼乌斯方程计算获得反应体系活化能为31.9 kJ·mol-1。AgBr/Ag3PO4/ZnFe2O4复合材料优异的可见光催化活性归因于光生电荷的有效分离,所产生的超氧自由基和空穴是RhB降解的主要活性物种。  相似文献   

13.
采用沉淀法制备了不同焙烧温度的Cr2O3催化剂,用于1,1,2-三氯乙烷(TCE)气相脱氯化氢制备二氯乙烯的反应。 采用X射线衍射(XRD)、氢气程序升温还原(H2-TPR)、氨气程序升温脱附(NH3-TPD)、X射线光电子能谱(XPS)表征手段,研究了Cr2O3催化剂气相催化裂解TCE脱氯化氢反应及其反应机理。 结果表明,Cr2O3催化剂上TCE气相脱氯化氢反应的转化率随着催化剂焙烧温度的升高逐渐降低,然而顺-1,2-二氯乙烯(cis-DCE)的选择性先增大后减小。 400 ℃焙烧的Cr2O3催化剂催化性能最好,TCE转化率为70.8%,顺-1,2-二氯乙烯的选择性为90.0%。 然而,催化剂的单位面积反应速率随着焙烧温度升高先提高后下降,400 ℃焙烧催化剂的单位面积反应速率为0.801×10-2 μmol/(s·m2)。 催化剂的单位面积反应速率和顺-1,2-二氯乙烯(cis-DCE)的选择性与催化剂表面Cr2O3物种具有很好的对应关系,表明催化剂表面Cr2O3物种有利于脱氯化氢反应。 以酸中心为活性中心计算得到的转换频率(TOF)变化趋势与单位面积反应速率相一致,400 ℃焙烧的催化剂的TOF为2.82×10-5 s-1,表明Cr2O3催化剂Cr物种合适的平均价态(~3.20)有利于脱氯化氢反应。  相似文献   

14.
以共沉淀法制备FeAl母体,采用浸渍法添加Zn、K和Cu助剂制成催化剂,利用低温N2物理吸附、XRD、H2-TPR等手段对FeAl母体和催化剂进行表征,并用固定床反应器考察它们的CO2加氢反应性能。XRD结果表明,加入Al助剂、并采用无水乙醇洗涤沉淀能促进酌-Fe2O3晶相生成,其中,Al2O3/Fe2O3质量比为10%的母体具有最强的酌-Fe2O3衍射峰;加入Al使得母体中的a-Fe2O3晶粒粒径变小,引起比表面积明显增大;浸渍助剂过程没有改变上述两种效应。母体比表面积增大提高了助剂Cu的分散度,促进了催化剂还原,但酌-Fe2O3晶相的生成才是催化剂的CO2加氢反应活性被提高的主要原因。  相似文献   

15.
分别在空气和氮气中对水热制备的薄膜进行热处理获得了纳米棒状α-Fe2O3光阳极。对样品分别进行了X射线衍射(XRD)、扫描电镜(SEM)、X射线光电子能谱(XPS)、紫外-可见吸收光谱和光电化学性能测试。与空气热处理获得的α-Fe2O3Air光阳极相比,氮气气氛热处理获得的α-Fe2O3光阳极正面光照电流密度显著提升达到0.42mA·cm-2。正面光照下,α-Fe2O3N2光阳极的体内电荷分离效率ηbulk和表面电荷注入效率ηsurface都有较大增加,说明N2热处理明显增加了α-Fe2O3膜的载流子浓度,增强了体内载流子的传输和表面载流子注入效率。  相似文献   

16.
利用光化学还原法制备了Ag/TiO2,然后通过乙酸浸渍制备了HAc-Ag/TiO2复合光催化剂.利用X射线衍射(XRD)、透射电子显微镜(TEM)、傅里叶变换红外光谱(FTIR)、X射线光电子能谱(XPS)和紫外-可见漫反射光谱(UV-Vis DRS)等手段表征了催化剂的性质.以降解水溶液中的甲基橙(MO)为探针反应,考察了催化剂在可见光下的光催化性能.结果表明,乙酸对TiO2的修饰在TiO2禁带中产生了"带尾",使TiO2的禁带宽度发生了显著的缩减;Ag纳米粒子和乙酸共同修饰的HAc-Ag/TiO2样品具有更窄的禁带宽度和更正的价带顶位置;Ag和乙酸的协同作用使HAc-Ag/TiO2具有良好的可见光催化活性:可见光照射2 h后,甲基橙在HAc-Ag/TiO2上的降解率接近100%.  相似文献   

17.
采用共沉淀法制备出复合载体TiO2-Al2O3,用N2-吸附、XRD和吡啶吸附红外光谱等手段进行表征。采用原位硫化法制备Ni-Mo-S/TiO2-Al2O3负载型催化剂,以苯酚为模型化合物研究其加氢脱氧催化性能。主要研究铝源和沉淀剂对TiO2-Al2O3复合载体性能的影响以及其作为载体对Ni-Mo-S/TiO2-Al2O3催化苯酚加氢脱氧反应的影响。结果表明,以氯化铝为铝源制备的复合载体具有较大的孔容和孔径,孔容达1.12cm3/g,孔径达18.0nm;以硫酸铝为铝源和以碳酸氢铵为沉淀剂制备的复合载体具有较大的比表面积,高达295m2/g;氨水沉淀制备的复合载体具有较多的L酸;以硫酸铝为铝源制备的复合载体形成少量的B酸。TiO2-Al2O3作为载体影响Ni-Mo-S/TiO2-Al2O3负载型催化剂加氢脱氧性能的主要因素是载体的酸性和载体的比表面积。在300℃,4.0MPa条件下Ni-Mo-S/TiO2-Al2O3催化苯酚的转化率达81.9%,产物中无氧化合物的总选择性达100%,脱氧率达79.4%。  相似文献   

18.
聚甲基膦酸乙二醇酯(PEMP)作为一种良好的阻燃剂,具有无毒、低烟、含磷量高、阻燃效果好的优点。 γ-Al2O3是催化乙二醇(EG)和甲基磷酸二甲酯(DMMP)缩合生成PEMP的良好催化剂。 但是由于γ-Al2O3容易吸附CO2和水分,降低其催化活性,所以使用前需要活化。 活化温度影响着γ-Al2O3的催化活性。 本文分别在300、400、500、600、700和800 ℃不同温度下对γ-Al2O3进行活化,用X射线粉末衍射(XRD)分析了γ-Al2O3晶型变化、用低温氮吸附比表面积测试法(BET法)测量了γ-Al2O3比表面积、孔径和孔容积,用傅里叶变换红外光谱(FTIR)分析了红外吸收变化,用吡啶吸附-FTIR测定了γ-Al2O3的Brønsted酸位点与Lewis酸位点相对含量。 比较了不同温度下活化的γ-Al2O3催化合成PEMP产品的纯度和粘度,找到了γ-Al2O3催化合成PEMP的适宜活化温度为400~600 ℃。 此时,γ-Al2O3属于典型的γ-Al2O3晶型,比表面积较大,孔径较小,所得PEMP产品纯度最高。  相似文献   

19.
使用相分离的水解-溶剂热法制备了α-Fe2O3纳米粒子, 通过简单的湿化学法实现了质量分数为3%的石墨烯、 氮掺杂石墨烯和g-C3N4 3种二维异质体对纳米α-Fe2O3的复合改性, 并比较了3种二维异质体对α-Fe2O3光催化活性的影响. 结果表明, 在光催化还原二氧化碳和降解液相苯酚过程中, 二维异质体的复合均提高了纳米α-Fe2O3的光催化活性, 氮掺杂石墨烯对α-Fe2O3的改性效果优于石墨烯, 其中g-C3N4α-Fe2O3的改性效果最优. 通过表面光电压谱、 光电化学及羟基自由基等测试, 确认二维异质体的复合改性主要通过促进纳米α-Fe2O3的光生电荷分离和提高活性中间组分(羟基自由基)的含量提高纳米α-Fe2O3的光催化活性.  相似文献   

20.
采用共沉淀-微波热解法,制备一系列Sn、Ti掺杂改性γ-Fe2O3催化剂样品(γ-Fe0.95Ti0.05Oz、γ-Fe0.95Sn0.05Oz、γ-Fe0.95Sn0.025Ti0.025Oz),研究Sn、Ti掺杂对γ-Fe2O3催化剂SCR脱硝活性的影响,借助XRD、N2吸附-脱附、EDS及SEM等手段对催化剂晶相、孔结构、表面元素及微观形貌等进行表征分析。结果表明,Sn、Ti掺杂后以无定形态高度分散于γ-Fe2O3晶格中,与Fe形成固溶体;单一助剂Ti掺杂制得的γ-Fe0.95Ti0.05Oz 最高脱硝效率达98.3%,且在250~400 ℃脱硝效率保持90%以上;Ti掺杂可以细化γ-Fe2O3晶粒,优化2~100 nm孔径孔隙结构,抑制α-Fe2O3的生成,促使γ-Fe2O3形成细致、均匀、独立的球状颗粒,对SCR反应有利;Sn掺杂则使催化剂出现严重烧结现象,导致2~6 nm孔径孔结构贫乏,对SCR脱硝反应不利;在Sn、Ti协同作用下,催化剂表面氧铁原子物质的量比由1.83降至1.33,表面晶格氧显著下降,一定程度上限制了SCR反应速率的提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号