首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
近年来为获得有机聚合物太阳能电池更高的能量转换效率,越来越多的活性层材料被设计合成出来,尤其是给体材料。其中,基于给体单元苯并二噻吩(BDT)的D-A型窄带隙共轭聚合物更是多次刷新了有机聚合物太阳能电池效率的最高记录,目前达10.6%。本文探讨了基于苯并二噻吩的D-A型窄带隙共轭聚合物材料结构及其应用在太阳能电池中的性能参数关系,从提高开路电压、短路电流和填充因子三个方面总结出了提高基于BDT共轭聚合物太阳能电池能量转换效率的方法。  相似文献   

2.
通过对苯并噻二唑单元进行氟、氯等卤原子取代,并同时调节烷基侧链的长度,设计合成了一系列基于苯并噻二唑四噻吩类的聚合物太阳电池材料.不同卤原子取代以及烷基侧链的长度都会影响聚合物的结晶性和薄膜聚集形貌从而改变其带隙和电荷传输性质.氟、氯原子的引入可调节聚合物的能级结构,而且相对于氟原子而言,具有更大原子半径的氯原子的引入可在更大尺度下调节能级结构,从而大幅提高相应太阳电池的开路电压,同时通过侧链的优化可进一步调节聚合物的微观聚集结构,改善器件能量转换效率.结果表明,在氯原子和氟原子共同作用的情况下,引入较长的侧链有利于提升聚合物的开路电压和短路电流,从而获得较好的器件性能.其中,以氯、氟共同取代的聚合物PCFBT4T-2OD与PC_(71)BM为活性层的器件性能最佳,能量转换效率可达8.84%.  相似文献   

3.
在其组成的共轭基元上进行氟取代是有机光电材料功能修饰的常见策略之一.在前期苯并二噻吩/苯并噻二唑ADA型小分子光电化合物基础上,在两个苯并噻二唑基元上引入不同个数的氟取代基,考察氟修饰位置和个数对其基本性质、场效应晶体管和光伏性能的影响.研究表明,随着氟原子数目的增加,化合物的溶解性能降低,热稳定性提高,最高占有轨道和最低空轨道能级降低,但光谱吸收范围变化不大.有机场效应晶体管器件测试表明,当苯并噻二唑单氟代且位于外侧位点时,化合物的空穴迁移率有所降低;当苯并噻二唑双氟代时,迁移率得到了明显提高,达到0.27cm~2·V~(-1)·s~(-1).光伏器件研究发现,氟原子的引入提高了器件的开路电压,但活性层形貌变差,最终导致短路电流密度和电池效率下降.  相似文献   

4.
苯并噻二唑结构单元被广泛用来构建高光电转换效率的有机太阳能电池材料.从聚合物太阳能电池、有机小分子太阳能电池以及染料敏化太阳能电池三个方面系统地综述了近年来含苯并噻二唑基团的有机太阳能电池材料的研究进展,并对其发展趋势和应用前景做了展望.  相似文献   

5.
吕敏  周瑞敏  吕琨  魏志祥 《化学学报》2021,79(3):284-302
随着新型小分子给体材料和非富勒烯小分子受体材料的开发和应用, 非富勒烯全小分子有机太阳能电池(NF-ASM OSCs)的光电转换效率已经突破15%, 并逐渐接近聚合物太阳能电池的效率. 相比于聚合物电子给体材料, 小分子电子给体材料拥有其独特的优势, 例如合成批次性差异小、分子量明确和易于提纯等; 但是, 对小分子给体材料的结晶性难于精确调控, 使获得合适的纳米级结构的混合膜仍然是一个挑战. 本综述以给体小分子中心共轭单元的扩展为主线, 从分子设计的角度汇总了近年来对苯并二噻吩、萘并二噻吩和二噻并苯并二噻吩类小分子给体材料的结晶性研究, 并为进一步改善电池活性层形貌和获得更高的光伏性能提供了未来发展的建议.  相似文献   

6.
设计了四个以四联噻吩为中心给电子单元,联二噻吩为末端给电子单元,不同功能的苯并噻二唑(DOBT,BT,FBT和FFBT)为吸电子单元的有机小分子太阳能电池给体材料,分别称为DOBT-8T,BT-8T,FBT-8T和FFBT-8T.在B3LYP/6-31G(d)基组的水平上利用密度泛函和含时密度泛函理论对四个小分子进行了理论计算.详细分析了吸电子单元苯并噻二唑的结构修饰对小分子给体材料性能的影响.理论计算结果显示,不同功能的苯并噻二唑单元的引入对小分子给体材料的几何结构、禁带宽度、HOMO与LUMO能级、轨道电子密度分配、能量驱动力、开路电压和分子中的原子电荷(NPA)都有重要调节作用.相比于其它分子,以FBT为吸电子单元的FBT-8T,显示了最窄的带隙和较低的HOMO能级值.以FFBT为吸电子单元的FFBT-8T,获得了最低的HOMO能级和较为合适的禁带宽度.利用Scharber模型分别计算了基于小分子/PC61BM为活性层的光伏器件的能量转换效率(PCE),基于FBT-8T/PC61BM和FFBT-8T/PC61BM的光伏器件,将获得的PCE分别高达约4.7%和5.2%.在以上研究的基础上,推测FBT-8T和FFBT-8T是潜在的高性能的有机小分子体异质结光伏给体材料.  相似文献   

7.
设计了四个以四联噻吩为中心给电子单元,联二噻吩为末端给电子单元,不同功能的苯并噻二唑(DOBT,BT,FBT和FFBT)为吸电子单元的有机小分子太阳能电池给体材料,分别称为DOBT-8T, BT-8T, FBT-8T和FFBT-8T.在B3LYP/6-31G(d)基组的水平上利用密度泛函和含时密度泛函理论对四个小分子进行了理论计算.详细分析了吸电子单元苯并噻二唑的结构修饰对小分子给体材料性能的影响.理论计算结果显示,不同功能的苯并噻二唑单元的引入对小分子给体材料的几何结构、禁带宽度、HOMO与LUMO能级、轨道电子密度分配、能量驱动力、开路电压和分子中的原子电荷(NPA)都有重要调节作用.相比于其它分子,以FBT为吸电子单元的FBT-8T,显示了最窄的带隙和较低的HOMO能级值.以FFBT为吸电子单元的FFBT-8T,获得了最低的HOMO能级和较为合适的禁带宽度.利用Scharber模型分别计算了基于小分子/PC61BM为活性层的光伏器件的能量转换效率(PCE),基于FBT-8T/PC_(61)BM和FFBT-8T/PC_(61)BM的光伏器件,将获得的PCE分别高达约4.7%和5.2%.在以上研究的基础上,推测FBT-8T和FFBT-8T是潜在的高性能的有机小分子体异质结光伏给体材料.  相似文献   

8.
有机太阳能电池(Organic solar cells, OSCs)作为一种新兴高效太阳能电池,近年来得到飞速发展.目前OSCs的光电转换效率(Powerconversionefficiency,PCE)已经达到19%以上,初见商业化应用曙光.但其稳定性方面尚未发展成熟,尤其在制备和工作过程中电池器件需要经历高温考验,电池的热稳定性要求高.三元共混策略是在传统的二元OSCs活性层中引入第三组分,利用第三组分调控分子间的相互作用,在实现高效光电转换效率的同时有效提高器件热稳定性,展现出了极大的应用潜力.本综述首先从器件热衰减过程出发,总结了OSCs热衰减过程中包括:热致活性层形貌变化、各层材料之间的互扩散行为以及界面老化等相关机制.在此基础上,重点介绍了三元策略在提高OSCs热稳定性方面的应用进展和作用机制.最后,对三元策略在OSCs中的应用发展进行总结并展望,指出第三组分的针对性选择以及作用机制解析是三元OSCs面临的关键问题和挑战.  相似文献   

9.
设计、合成了侧链含有强吸电结构的丙二酸二丁酯受体单元与苯并[1,2-b:4,5-b′]二噻吩给体单元交替共聚物PBDTDT,研究了其热学、光学、电化学性质以及与受体PC71BM([6,6]-苯基C71丁酸甲酯)共混作为活性层制备成本体异质结聚合物有机太阳能电池的光伏性质,考察了PBDTDT与PC71BM不同比例时的光伏性能,当聚合物PBDTDT和PC71BM质量比为1∶3制备的器件,其开路电压达到了0.82 V,能量转换效率(PCE)为0.90%,短路电流为3.25 mA/cm2,填充因子FF为0.338,同时将其与同等工艺制备的poly(3-hexylthiophene)(P3HT)太阳能电池的光伏性能进行比较,相同工艺下制备的P3HT电池的开路电压仅为0.55 V,由PBDTDT制备的电池开路电压比P3HT电池的开路电压高出0.29V,同时分析了PBDTDT能量转换效率较P3HT低的原因.  相似文献   

10.
将一种具有扭曲结构的稠环苝酰亚胺单元(FPDI-Th)和二氟苯并噻二唑(DFBT)作为单体,并在两者之间插入带有不同烷基侧链的噻吩作为桥接单元,合成了两种新的聚合物受体PPDIBT-Th与PPDIBT-Th-C6,并将其用于全聚合物太阳能电池器件。研究了烷基侧链对聚合物性质和有机太阳能电池(OSCs)器件性能的影响。结果表明:基于这两种聚合物的OSCs器件都展示了优异的光伏性能,烷基侧链的引入不仅会影响分子自身的堆积,还会影响与其共混的聚合物的固态堆积。引入适量的烷基侧链有利于活性层的整体形貌达到较好的平衡状态,提升光伏器件的性能。虽然PPDIBT-Th-C6自身分子间堆积变弱,但是PPDIBT-Th-C6和聚合物给体共混成膜之后,有效保证了给体的固态堆积,最终获得了更大的光电流(12.15 mA/cm~2)与光电转换效率(4.95%)。  相似文献   

11.
将非富勒烯受体2,2′-{(2Z,2′Z)-[4,4,9,9-四(对己基苯)-4,9-二氢-S-引达省并二噻吩-2,7-二基]双(甲基亚基)}-双-(3-氧代-2,3-二氢-1H-茚-2,1-二亚甲基)二丙二腈(IDIC)作为第三组分引入小分子给体卟啉二聚体ZnP2-DPP和富勒烯(6,6)-苯基-C61-丁酸甲酯(PC61BM)受体体系,构建了光电转换效率达12.18%的全小分子有机太阳能电池,高于ZnP2-DPP∶PC61BM的9.47%和ZnP2-DPP∶IDIC的8.82%的光电转换效率.IDIC的引入扩大了光谱的吸收范围,并且促进了给受体之间的电荷转移,使得三元共混物中可以产生更高的光电流.另外,IDIC的加入优化了共混膜的形貌,分子取向也得到了明显的调整,形成了face-on和edge-on的混合取向,从而使活性层中形成了更有利的三维电荷传输通道,促进了短路电流密度和填充因子的提高.这种策略发挥了富勒烯和非富勒烯受体的优势,从而提高了有机太阳能电池的4个参数.  相似文献   

12.
设计并合成了两种基于5,6-二氟苯并噻二唑和双噻吩丙烯腈单元的D-A型共轭聚合物,聚[(5,6-二氟-苯[c][1,2,5]噻二唑-4,7-基)-交替-((E)-2,3-双(3'-(2-辛基十二烷基)-(2,2'-双噻吩)-5,5'-基)丙烯腈)](DFBT812)和聚[(5,6-二氟-苯[c][1,2,5]噻二唑-4,7-基)-交替-((E)-2,3-双(3'-(2-癸基十四烷基)-(2,2'-双噻吩)-5,5'-基)丙烯腈)](DFBT1014)作为聚合物太阳电池的给体材料。通过侧链工程,引入了2-辛基十二烷基和2-癸基十四烷基侧链实现对聚合物的溶解性,结晶性以及共混膜形貌的调节。研究结果表明,共轭聚合物DFBT812与PC_(61)BM的共混膜表现出更好的相分离尺度,能够促进载流子的传输和抽取。基于共轭聚合物DFBT812的太阳电池器件取得了0.87 V的开路电压和6.25%的能量转换效率。除此之外,基于DFBT812的聚合物太阳电池器件在活性层厚度为220 nm时仍然表现出6%的能量转换效率。  相似文献   

13.
利用微波协助的Stille缩合聚合反应方法合成了基于双噻吩苯并噻二唑和异靛单元的受体-受体聚合物HFTBT-DA865,并对其热稳定性、光物理性能、电化学性质和本体异质结太阳能电池性能进行了研究.该聚合物易溶于邻二氯苯和邻二甲苯等溶剂,具有优异的溶液加工性能.5%热分解温度为389℃,玻璃化转变温度为168℃,说明其具有较好的热稳定性能.对旋涂速度和温度进行优化,所得太阳能电池器件的光电转换效率为2.28%,开路电压为0.83 V,短路电流为-5.70 mA/cm^2,填充因子为48.9%.电化学性能和密度泛函理论估算结果表明,聚合物与受体材料PC71BM相近的最低未占分子轨道(LUMO)值及其平面性可能是影响光伏性质的重要因素.通过调控共聚单体或优化受体材料,器件性能可进一步提高.对受体-受体(A-A)类聚合物材料太阳能电池性能的研究表明,此类材料是一类潜在的聚合物太阳能电池材料.  相似文献   

14.
聚合物太阳能电池因其易于加工、可制备成柔性器件、材料来源广泛等优点得到材料界和能源界的广泛关注。有机太阳能电池效率的不断提高主要得益于材料的发展和电池器件结构的优化。从材料设计角度考虑,种类众多的给体和受体单元被开发用来构建有机共轭分子,其中,苯并噻二唑单元由于共轭平面较大和吸电子性较强的特性被广泛用于构建高性能的有机太阳能电池材料。基于此,本文首先介绍了苯并二噻吩单元及其衍生物常见的合成方法,随后总结了其在构建聚合物给体方面的应用,最后对其后续发展方向和前景提出了展望。  相似文献   

15.
聚噻吩(PT)衍生物由于简单易合成和较好的光电性能,被广泛运用于有机太阳能电池(OSCs)中,但PT较高的能级限制了其在非富勒烯类OSCs的应用。为了降低PT的能级结构,本研究将噻唑单元引入到聚噻吩主链中,设计并合成了新型聚合物给体材料PBTzCl-T。通过紫外-可见吸收光谱、电化学循环伏安法及密度泛函理论(DFT)计算等对聚合物的结构、光学和电学性能进行了表征,并对制备的光伏器件进行了光电性质研究。结果表明:噻唑的引入能够有效降低聚合物的HOMO和LUMO能级,从而提高光伏器件的开路电压。PBTzCl-T在不同溶剂中表现出不同的预聚集行为,进而影响聚合物给受体界面处的电荷转移能力和活性层形貌,导致光伏器件的短路电流和填充因子变化。  相似文献   

16.
有机太阳能电池(organic solar cell,OSC)是由有机材料构成活性层的太阳能电池.苯并[1,2-b:4,5-b']二噻吩(benzo[1,2-b:4,5-b']dithiophene,BDT)由于具有较大的刚性平面共轭结构,可以显著提高π电子的离域能力和分子间的π-π相互作用,且易化学修饰,合成方便,成为太阳能电池给体材料研究中的一个"明星分子"单元.目前,已报道的基于BDT共轭单元的有机光伏器件(organic photovoltaic device,OPV)的光电转化效率(power conversion efficiency,PCE)最高已达到9.95%,应用前景巨大.综述了BDT基小分子有机太阳能电池(small molecule organic solar cell,SM-OSC)活性层材料近年来的研究进展,并简要分析了小分子由于主链、侧链、封端基团的差异对器件性能的不同影响.  相似文献   

17.
钙钛矿太阳能电池由于具有高的光电转换效率,简单的溶液加工工艺,较低的成本等优势因而拥有广阔的应用前景。有机小分子空穴传输层材料在钙钛矿太阳能电池中扮演着极其重要的角色。在本工作中,我们设计和合成了基于吡嗪为分子中心核,三苯胺为分枝的X型空穴传输层材料PT-TPA。与Si-OMeTPA对比,吡嗪的引入不仅不会影响其结晶性,并且能够改善其电荷转移特性和分子中心共平面性,从而显著提升了PT-TPA的空穴迁移率。在非掺杂的情况之下,基于PT-TPA空穴传输层的p-i-n型钙钛矿太阳能电池展现出17.52%的光电转换效率,与相同条件下基于Si-OMeTPA空穴传输层的器件相比,效率提高了近15%。  相似文献   

18.
程沛  史钦钦  占肖卫 《化学学报》2015,73(3):252-256
成功构筑了基于聚合物给体P3HT/有机小分子TT-TTPA/富勒烯受体PC61BM的三元共混有机太阳能电池. 共轭有机小分子TT-TTPA与PC61BM有很好的相容性, 相分离很小. 溶剂退火和热退火时, 含量相对较少的TT-TTPA容易从P3HT相中脱离出来进入PC61BM相, 增加P3HT的结晶空间, 从而提高P3HT的结晶度和相纯度. 通过引入少量的第三组分TT-TTPA, 制备的三元共混有机太阳能电池获得了4.41%的能量转换效率, 相对于P3HT/PC61BM二元共混体系的效率(3.85%)提高显著.  相似文献   

19.
设计并通过Stille缩聚方法合成了一种基于四氟苯和4,8-双(5-(2-乙基己基)噻吩-2-基)-苯并[1,2-b:4,5-b’]二噻吩单元的推拉电子型宽带隙聚合物(PBDT4F)作为聚合物太阳能电池的给体材料。用核磁共振氢谱(1H-NMR)、凝胶渗透色谱(GPC)、热重分析、紫外-可见吸收光谱和循环伏安法等对其进行了表征。结果表明:PBDT4F对400~600 nm短波长光具有强吸收能力,并且具有低的最高占有轨道(HOMO)能级和适合的最低未占有轨道(LUMO)能级。基于PBDT4F为给体、有机小分子(5Z,5’Z)-5,5’-((7,7’-(4,4,9,9-四辛基-4,9-二氢-s-茚并[1,2-b:5,6-b’]二噻吩-2,7-二基)双(苯并[c][1,2,5]噻二唑-7,4-二基)双(亚甲叉))双(3-乙基-2-硫代-4-噻唑烷二酮)(O-IDTBR)为受体的共混活性层的光伏器件取得了0.986 V的开路电压和2.58%的光电转化效率。  相似文献   

20.
在本工作中,我们以烷硫基噻吩基取代的苯并二噻吩(BDTT-S)为给体单元、5, 6-二氟取代苯并三唑(FBTz)和噻唑并噻唑(TTz)为弱吸收电子受体单元,设计合成了一系列宽带隙的无规三元共聚物给体材料。通过改变两个受体单元FBTz和TTz在聚合物中的摩尔比,有效调节了聚合物的光学、电化学、分子排列以及电荷传输性能。最终,使用非卤溶剂为加工溶剂,以三元共聚物PSBTZ-60为给体、ITIC为非富勒烯受体的聚合物太阳能电池(PSCs)获得了10.3%的能量转换效率(PCE),其中开路电压为0.91 V,短路电流为18.0 mA·cm−2,填充因子为62.7%;与之相比,在相同的器件制备条件下,基于PSTZ:ITIC的PSCs仅获得8.5%的PCE,基于PSBZ:ITIC的PSCs也仅获得8.1%的PCE。这些结果表明:三元无规共聚能够作为一种简单且实用的策略去设计、合成高性能聚合物光伏材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号