首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
制备了聚({4,8-双[(2,5,8,11,14,17,20-七氧二十二烷-22-基)氧基]苯并[1,2-b∶4,5-b']二噻吩}-交替-[2,5-二(噻唑-2-基)吡嗪])(P7O-2N-2N)和聚({4,8-双[(2,5,8,11,14,17,20-七氧二十二烷-22-基)氧基]苯并[1,2-b∶4,5-b']二噻吩}-交替-[3,6-双(5-溴-2-噻吩基)-1,2,4,5-四嗪])(P7O-4N)2个亲水性共轭聚合物, 通过调节主链含氮杂环上氮原子的位置, 系统研究了主链结构对材料吸收光谱、 能级、 氢结合自由能及光催化性能的影响. 研究发现, 与P7O-2N-2N相比, P7O-4N表现出更强的链间聚集、 更低的氢结合自由能及更好的光催化制氢性能.  相似文献   

2.
非富勒烯小分子受体(SMAs)有序聚集决定聚合物/非富勒烯共混体系光伏电池的双分子复合几率。 然而,由于非对称相分离聚合物趋于优先形成网络,抑制小分子受体分子结晶。 在聚[(2,6-(4,8-二(5-(2-乙基己基噻吩-2-基)苯并[1,2-b:4,5-b']二噻吩))-alt-(5,5-(1',3'-二-2-噻吩基-5',7'-二(2-乙基己基)苯并[1',2'-c:4',5'-c']二噻吩-4,8-二酮))](PBDB-T)/9-二(2-亚甲基(3-(1,1-二氰基亚甲基)-6,7-二氟-茚酮))-5,5,11,11-四(4-己基苯基)-二噻吩并[2,3-d:2',3'-d']-s-引达省[1,2-b:5,6-b']二噻吩(IT-4F)共混体系,四氢呋喃蒸汽处理可提高IT-4F结晶性,150 ℃热退火可提高PBDB-T的结晶性。 因此,依次利用蒸汽退火和热退火处理薄膜,诱导小分子先结晶、聚合物后结晶,从而降低PBDB-T对小分子扩散的限制,构建高结晶互穿网络结构。 形貌优化后降低了双分子复合,器件光电转换效率从5.95%提高至7.18%。  相似文献   

3.
设计合成了3种主链相同、侧基不同的Donor(D)-π-Acceptor(A)型共轭聚合物:聚[(4,8-二辛氧基苯[1,2-b;3,4-b]二噻吩)-(9-(4-氰基苯基)-9H-咔唑)](PBDTCz-CN)、聚[(4,8-二辛氧基苯[1,2-b;3,4-b′]二噻吩)-(9-(4-醛基苯基)-9H-咔唑)](PBDTCz-CHO)和聚[(4,8-二辛氧基苯[1,2-b;3,4-b]二噻吩)-(9-(4-硝基苯基)-9H-咔唑)](PBDTCz-NO_2)。通过调变侧基上的受体基团,比较了氰基、醛基、硝基对聚合物光学和电学性能的影响,讨论了影响聚合物光电转换效率的主要因素。3种聚合物的光学带隙和线性吸收系数依次分别为2.32 eV,152.0 L/(g·cm);2.43 eV,58.5 L/(g·cm)和2.25 eV,85.5 L/(g·cm)。在这些聚合物中,彼此间的最高占据分子轨道(HOMO)能级差距很小,PBDTCz-NO_2的最低未占据分子轨道(LUMO)能级最低(-3.38eV)。在100 W/m~2模拟太阳光的照射下,基于这些聚合物的光伏器件(器件结构:ITO/PEDOT:PSS/Polymer:[70]PCBM(1:2)/Ca/A1)的光电转换效率分别为0.44%(PBDTCz-CN)、0.001 8%(PBDTCz-CHO)和0.23%(PBDTCz-NO_2)。低的光电转换效率主要归因于低的短路电流,而影响短路电流的主要原因有自身吸光性能的限制和弱的π-π堆砌作用。  相似文献   

4.
合成了一种给-受体型平面分子结构的低带隙共轭聚合物QP-1(聚[2,6-4,8-双十二烷氧基苯并[1,2-b;3,4-b’]二噻吩-4,7-二[2,5-噻吩]-5,6-二烷氧基-2,1,3苯并噻二唑)),研究了其热学、光物理和光伏性质。由电化学测试得到聚合物的带隙为1.79eV,最高分子占有轨道HOMO和最低分子未占轨道LUMO值分别为-5.47 eV和-3.49 eV。与富勒烯的衍生物PCBM有较为理想的能级匹配水平。使用聚合物/PC71BM共混物作为活性层构筑了本体异质结聚合物太阳能电池。光伏电池的能量转换效率为1.01%,开路电压为0.58 V,短路电流为4.25 mA/cm2,填充因子ff值为0.33。X射线粉末衍射(XRD)结果显示平面主链间的距离为0.365nm,具有较好的结晶性。  相似文献   

5.
使用甲醇溶剂熏蒸聚(4,8-双[5-(2-乙基己基)噻吩-2-基]苯并[1,2-b;4,5-b']双噻吩-2,6-双基-{4-(2-乙基己基)-3-氟代噻吩[3,4-b]噻吩-}-2-羧基-2,6-双基)(PTB7-Th)和聚[N,N'-双(2-辛基十二烷基)-1,4,5,8-萘二酰亚胺-2,6-双基-并-5,5'-(2,2'-双噻吩)](N2200)二元混合的活性层薄膜,发现其活性层和镀金探针间的接触电势差从37 m V升高到160 m V,表明活性层表面功函由4.71 e V降低到4.59 e V.XPS结果表明,由于甲醇和N2200之间更强的相互作用,在溶剂熏蒸过程中有更多的N2200分子扩散到薄膜表面.扩散引起了活性层表面功函的减小,使活性层和电极之间能级更加匹配,形成了更好的欧姆接触,使器件的功率转化效率提高了10%以上.  相似文献   

6.
合成了6,12-二(三乙基硅乙炔基)二苯并[d,d’]苯并[1,2-b;4,5-b’]二噻吩,并通过熔点测定、元素分析、核磁共振谱、质谱及X-单晶衍射分析对其进行了表征,同时对其作为有机场效应管(OFET)材料的性能进行了测试.结果表明,该材料在器件中载流子迁移率高达0.53 cm2/Vs,开关比为105.  相似文献   

7.
采用密度泛函理论(DFT)的B3LYP/6-31G(d)方法对以低聚噻吩为端基、 苯并二噻吩(TPT)和并三噻吩(TTT)为共轭桥、 炔键为连接臂的20个模型化合物进行了计算研究. 在优化中性与离子态几何构型基础上, 获得了前线轨道能级、 电离能(IPs)、 电子亲和势(EAs)、 空穴/电子重组能(λhe)、 载流子迁移率(μhe)及吸收光谱等信息. 结果表明, 炔键的引入及端基低聚噻吩的增加对LUMO能级的调控作用较为显著, 而共轭桥的类型对HOMO能级影响较大; 合理选择端基、 共轭桥和连接臂等结构单元可对该类材料吸光波段及强度进行有效调节. 一维电荷传输模型结果表明, 所设计的化合物均是潜在的双极性有机半导体材料, 其中2,7-二([2,2':5',2'-三噻吩]-5-基)苯并[1,2-b:6,5-b']二噻吩(A3)和2,7-二(二噻吩并噻吩-2-基乙炔基)苯并[1,2-b:6,5-b']二噻吩(a-3)具有较高的电子迁移率, 值得进一步的实验探索研究.  相似文献   

8.
以高度平面共轭的烷基取代三聚茚为中心核, 以噻吩基团桥联, 在末端连接氰基茚酮作为拉电子基团, 设计合成了一类星型受体分子2,2',2″-{[(5,5,10,10,15,15-己基-10,15-二氢-5H-二茚[1,2-a:1',2'-c]芴-2,7,12-三基)三(噻吩-5,2-二基)]三(亚甲基)}三(3-氧杂-2,3-二氢-1H-茚-2,1-二叉)三丙二腈(NFT-C6)和2,2',2″-{[(5,5,10,10,15,15-癸基-10,15-二氢-5H-二茚[1,2-a:1',2'-c]芴-2,7,12-三基)三(噻吩-5,2-二基)]三(亚甲基)}三(3-氧杂-2,3-二氢-1H-茚-2,1-二叉)三丙二腈(NFT-C10). NFT-C6和NFT-C10的最高占据轨道(HOMO)和最低未占轨道(LUMO)分别位于-5.66和-3.75 eV. 其薄膜在400~700 nm范围内具有较大的吸收强度, 最大吸收峰分别位于606和586 nm. 以聚[(2,6-{4,8-二[5-(2-乙基己基)噻吩-2-基]-苯并[1,2-b:4,5-b']二噻吩})-{5,5-(1',3'-二-2-噻吩基-5',7'-二(2-乙基己基)苯并[1',2'-c:4',5'-c']二噻吩-4,8-二酮)}](PBDB-T)为给体材料, 以NFT-C6或NFT-C10为受体材料制备了太阳能电池器件, 器件在300~700 nm之间具有较宽的响应光谱, 其光电转换效率(PCE)分别达到1.09%和5.23%. 原子力显微镜(AFM)结果表明, PBDB-T和NFT-C10共混制备的光伏器件活性层具有合适的相分离尺寸, 有利于激子的有效解离, 而PBDB-T: NFT-C6器件的活性层相分离尺寸过大, 增加了激子复合的几率, 使器件的短路电流、 填充因子和PCE降低. 研究结果表明, 基于三聚茚的星型光伏材料具有一定的应用前景.  相似文献   

9.
张小梅  李淼淼  王琪  江宇  耿延候 《应用化学》2019,36(9):1023-1034
以不同烷基取代的二噻吩并吡咯(DTP)为π桥,连接吲哒省并二噻吩(IDT)中间单元和氰基茚酮(IC)或二氟代氰基茚酮(2F-IC)末端基团,设计并合成了6个窄带隙的非富勒烯受体材料。 其中,IDTDTP-C2C2-H和IDTDTP-C2C2-F中的DTP单元以1-乙基丙基为侧链,IDTDTP-C6C6-H和IDTDTP-C6C6-F中的DTP单元以1-己基庚基为侧链,IDTDTP-C12-H和IDTDTP-C12-F中的DTP单元以十二烷基为侧链。 6个分子均具有较窄的光学带隙(1.37~1.44 eV)。 相比于以IC为末端基团的分子(IDTDTP-C2C2-H、IDTDTP-C6C6-H和IDTDTP-C12-H),由于氟原子的拉电子效应,以2F-IC为末端基团的分子(IDTDTP-C2C2-F、IDTDTP-C6C6-F和IDTDTP-C12-F)具有红移的吸收光谱,以及更低的最高分子占有轨道能级(HOMO)和最低分子空轨道(LUMO)能级。 以宽带隙聚合物聚[2,6-(4,8-双(5-(2-乙基己基))噻吩-2-基)-苯并[1,2-b:4,5-b']二噻吩-alt-5,5-(1',3'-二-2-噻吩)-5',7'-双(2-乙基己基)-苯并[1',2'-c:4',5'-c']二噻吩-4,8-二酮](PBDB-T)为给体材料,制备了有机太阳能电池器件。 PBDB-T:IDTDTP-C6C6-F共混薄膜具有较高且更平衡的空穴/电子迁移率,以及良好的形貌,基于PBDB-T:IDTDTP-C6C6-F的有机太阳能电池获得了6.94%的能量转换效率,开路电压为0.86 V,短路电流密度为13.56 mA/cm2,填充因子为59.5%。  相似文献   

10.
有机忆阻器具有超快速度、超低功耗、非易失性存储等优势,有希望成为突破当前冯·诺依曼瓶颈和摩尔定律极限的关键电子元器件。利用2,6-双(三甲基锡)-4,8-双(5-己基-2-噻吩)-苯并[1,2-b:4,5-b’]二噻吩,4,9-二溴-6,7-双苯基[1,2,5]噻二唑-[3,4-g]喹喔啉和4,8-二溴苯并[1,2-c:4,5-c’]双[1,2,5]噻二唑,通过Stille偶联法合成得到两种新型二维共轭给体-受体型聚合物pBDTT-PTQx和pBDTT-BBT,通过选取位阻较小的取代基、长度较短的烷基链和强推拉电子效应的共轭给体-受体单元优化分子共平面性,并对比研究了共平面性对材料阻变特性的影响。两种材料均具有高鲁棒性的Flash型阻变行为,可循环擦写100圈以上,其中pBDTT-BBT具有更好的分子共平面性,器件表面均方粗糙度仅为1.71 nm,开/关电压的扰动系数仅为9.4%和6.7%,高/低阻态的扰动系数为13.7%和9.4%,相较于PBDTT-PTQx,开/关电压与高/低阻值的稳定性和均一性获得很大提升。  相似文献   

11.
以噻并[3,2-b]噻吩(TT)修饰的二维苯并[1,2-b:4,5-b′]二噻吩(BDT)作给电子单元、TT作共轭π桥、苯并[d][1,2,3]三氮唑(BTA)或5,6-二氟苯并[d][1,2,3]三氮唑(FBTA)作缺电子单元,在三(二亚苄基丙酮)二钯(Pd2(dba)3)、三(邻甲苯基)膦(P(o-tol)3)催化剂体系下通过Stille缩合聚合方法制备了宽带隙共聚物PTTBDT-BTA和PTTBDT-FBTA。用核磁共振氢谱(1 H-NMR)和碳谱(13C-NMR)、元素分析、凝胶渗透色谱(GPC)、热重分析、紫外-可见吸收光谱和循环伏安法等对其进行了表征。系统研究了氟取代对材料的热稳定性、成膜性、吸收光谱、溶液状态下的聚集行为、固态薄膜的光稳定性、能级和光伏性能的影响。研究表明:相比PTTBDT-BTA,氟代聚合物PTTBDT-FBTA失重5%的热分解温度提高了20℃、溶解性明显变差、薄膜态吸光范围稍微变窄、氯苯溶液状态下聚合物链间聚集作用显著增强、薄膜的光稳定性提高且最高分子占有轨道能级(EHOMO)下降了0.10V。光伏性能测试显示氟取代使PTTBDT-FBTA基器件的能量转换效率(PCE)提高了49.3%,这获益于开路电压(UOC)提高了16.9%、短路电流密度(JSC)提高了13.2%和填充因子(FF)提高了11.8%。  相似文献   

12.
设计并合成了4个基于含硫芳杂稠环化合物的可溶性共轭齐聚物,即以3-十一烷基苯并[d,d’]噻吩并[3,2-b;4,5-b ’]并二噻吩(BTTT)为末端芳香单元,噻吩(T)、二噻吩(bT)、N-十二烷基-二噻吩并[3,2-b]吡咯(TP)或2,5-双(3-十二烷基噻吩)[3,2-b]并二噻吩 (qT)为中间芳香单元的...  相似文献   

13.
分别采用Heck耦合法和水热法制备了3,7-二(4-双乙烯基苯基)苯并[1,2-b:4,5-b’]二呋喃-2,6-二酮(BDF)/2,5-二辛基-3,6-二(5-溴噻吩)-吡咯并[3,4-c]吡咯-1,4-二酮(DPP)共聚物给体材料(PDBFP)和石墨烯量子点(GQDs)受体材料。通过1 H-NMR、FT-IR表征了PDBFP和GQDs的结构,采用DLS、HR-TEM和AFM表征了GQDs的形貌和尺寸。研究表明:GQDs在307nm处存在紫外吸收峰,而在424nm处拥有最强荧光发射峰。相对于PDBFP在712nm处的发射峰,GQDs的引入使得PDBFP-GQDs光活性层材料的荧光发射峰出现红移,且荧光发射强度有所增加。用电化学测试法测得PDBFP和GQDs的最高占有分子轨道能级(HOMO)、最低未占有分子轨道能级(LUMO)和禁带宽度(Eg)分别为:-5.32、-3.39、1.93eV和-4.11、-3.87、0.24eV。以PDBFP和GQDs制得的ITO/PEDOT∶PSS/PDBFP∶GQDs(8∶1)/Ag器件原型拥有1.04%的光电转换效率。  相似文献   

14.
设计并合成了两种基于5,6-二氟苯并噻二唑和双噻吩丙烯腈单元的D-A型共轭聚合物,聚[(5,6-二氟-苯[c][1,2,5]噻二唑-4,7-基)-交替-((E)-2,3-双(3'-(2-辛基十二烷基)-(2,2'-双噻吩)-5,5'-基)丙烯腈)](DFBT812)和聚[(5,6-二氟-苯[c][1,2,5]噻二唑-4,7-基)-交替-((E)-2,3-双(3'-(2-癸基十四烷基)-(2,2'-双噻吩)-5,5'-基)丙烯腈)](DFBT1014)作为聚合物太阳电池的给体材料。通过侧链工程,引入了2-辛基十二烷基和2-癸基十四烷基侧链实现对聚合物的溶解性,结晶性以及共混膜形貌的调节。研究结果表明,共轭聚合物DFBT812与PC_(61)BM的共混膜表现出更好的相分离尺度,能够促进载流子的传输和抽取。基于共轭聚合物DFBT812的太阳电池器件取得了0.87 V的开路电压和6.25%的能量转换效率。除此之外,基于DFBT812的聚合物太阳电池器件在活性层厚度为220 nm时仍然表现出6%的能量转换效率。  相似文献   

15.
研究了一种由低聚合度的聚[2,6-(4,4-双-(2-乙基己基)-4H-环戊[2,1-b;3,4-b’]双噻吩)-交替-4,7-(2,1,3-苯并噻二唑)](LDP-PCPDTBT)、聚甲基丙烯酸甲酯(PMMA)和[6,6]-苯基-C61-丁酸甲酯(PC61BM)组成的三组分共混薄膜。通过加入溶剂添加剂1,8-二溴辛烷(DBO)进行处理,在未加入溶剂添加剂时,LDP-PCPDTBT相和PC61BM相在PMMA的基质中分别处于无定形和结晶态;应用DBO促进了LDP-PCPDTBT成分的结晶和PC61BM成分的聚集,开路电压明显提高,PMMA基质中的LDP-PCPDTBT和PC61BM的相分离尺度优化,太阳能电池的能量转换效率提高近50%。研究表明,低聚合度交替共聚物能够作为有效的给体材料,与PMMA联合使用利于降低有机太阳能电池材料的成本。  相似文献   

16.
以三(二亚苄基丙酮)二钯(Pd_2(dba)_3)为催化剂,三甲苯基磷(P(o-tol)_3)为配体,4,3'-十二烷基-2,2'-联二噻吩(M1)和2,8-二溴-5-(2-己基癸基)苯并三噻吩(M2)为单体,采用Stille交叉偶联反应,合成了基于苯并三噻吩和联二噻吩单元的共轭聚合物(PBTT)。采用热重分析、紫外-可见分光光度计及电化学分析分别研究了聚合物PBTT的热性能、光学性能和电化学性能。结果表明:聚合物PBTT具有优异的热稳定性和低的最高占有轨道能级(HOMO);聚合物薄膜最大吸收峰位于469 nm,光学能带隙为2.10 eV;将聚合物与[6,6]-苯基-C_(61)-丁酸甲酯(PC_(61)1BM)共混材料作为活性层制作了本体异质结构太阳能电池器件,在模拟太阳光源AM 1.5 G 100 mW/cm~2照射条件下,该器件获得了高达1.00 V的开路电压,初步的能量转化效率为0.43%。  相似文献   

17.
合成了两种非对称芳基取代的并三噻吩化合物.以2-溴-5-三甲基硅-二噻吩并[2,3-b:3′,2′-d]噻吩为原料,经脱除四甲基硅烷(TMS)和Suzuki偶联两步反应制备了2-噻吩基二噻吩并[2,3-b:3′,2′-d]噻吩,总产率为67.4%;以2-苯基二噻吩并[2,3-b:3′,2′-d]噻吩为原料,经N-溴代琥珀酰亚胺(简称NBS)溴代和Suzuki偶联两步反应制备了2-苯-5-噻吩基二噻吩并[2,3-b:3′,2′-d]噻吩,总产率为27.8%.产物经核磁共振谱(1H NMR,13C NMR)和质谱(MS)分析确认;利用紫外-可见分光光度法(UV-Vis)分析了合成产物的荧光特性.结果表明,由于苯基的存在,2-噻吩-5-苯基二噻吩并[2,3-b:3′,2′-d]噻吩分子的共轭体系增大,导致其吸收峰红移、发光能力减弱.  相似文献   

18.
设计并合成了一种交叉共轭的(cross-conjugated)缺电子型聚合物单体——二溴代噻吩[2,3-b]并噻吩-吡咯[3,4-c]并吡咯(DPPTTZ)二酮,并将其分别与噻吩(T)、硒吩(Se)和N-甲基吡咯(Py)的双锡试剂进行共聚反应,获得了一类新的供体-受体(D-A)型共轭聚合物光电材料.这类材料分子的最高占有轨道(HOMO)能级较低,因此其光电器件具有较高的开路电压(Voc),稳定性好.此外,它们在紫外-可见光区有较宽的吸收,最大吸收位于波长620 nm附近;能带隙(band gap)小,分别为1.86 e V(p DPPTTZ-T)、1.83 e V(p DPPTTZ-Se)和1.85 e V(p DPPTTZ-Py).器件初步测试结果表明,上述聚合物与PC71BM组成的本体异质结聚合物太阳能电池Voc在0.68~0.81 V之间,能量转化效率(PCE)最高达3.05%(p DPPTTZ-T).  相似文献   

19.
以苯并[1,2-c:4,5-c']二[1,2,5]噻重氮和吡嗪并[2,3-g]喹喔啉为电子受体(A),噻吩、噻吩并[3,2-b]噻吩和二噻吩并[2,3-b:2',3'-d]噻吩为电子供体(D),设计了6种D-A型共轭聚合物.采用B3LYP方法,研究了这6种聚合物的几何结构和电子性质.D-A型共轭聚合物的几何结构和电子结构与电子供体和电子受体的性质,特别是与其提供电子和接受电子的能力密切相关.聚合物的能隙主要受键长交替控制,键长交替越小,能隙越窄.所设计的6种聚合物中,p-BBT-TT具有较窄的能隙(0.48 eV)、较小的载流子有效质量和相对较大的能带宽度,具备理论上的良好导电性能,可能是潜在的优良导电聚合物材料.  相似文献   

20.
杨瑞  蔡雪刁  丁黎明 《化学学报》2015,73(3):281-288
还原橙3具有稠环结构, 但是其在许多有机溶剂中的不溶性阻碍其作为光伏材料的使用. 对还原橙3进行修饰得到还原橙3的衍生物4,10-双(4-己基-2-噻吩基)-6,12-双(二氰基亚乙烯基)二氢化蒽并蒽(TCVA), 对TCVA的光电性能进行研究, 结果表明, TCVA在紫外-可见光区有较强的吸收, 循环伏安法表明TCVA的HOMO和LUMO能级分别为-6.04和-4.42 eV, 将其与P3HT共混制备太阳能电池, 其效率为0.3%. 将还原橙3衍生物作为受体单元制备D-A结构的给体聚合物聚4,10-双(4-己基-2-噻吩基)-6,12-双(二氰基亚乙烯基)二氢化蒽并蒽连2,6-双(三甲基锡)-4,4-二(2-乙基己基)二噻吩并[3,2-b:2',3'-d]噻咯(PTCVADTS), 该聚合物有非常窄的带隙0.94 eV, 但是由于其LUMO能级较受体材料(6,6)-苯基-C61(71)-丁酸甲酯(PCBM)的LUMO能级小, 阻碍了激子的分离, 使电池器件的效率很低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号