首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 203 毫秒
1.
探讨了利用连续流动分析仪测定水溶肥料中的硝态氮的方法。选择含腐植酸、有机、微量元素、大量元素等4类水溶肥料样品,采用水振荡浸提试样,利用连续流动分析仪对浸提液中硝态氮的含量进行测定,并与紫外分光光度计测定数据进行对比,探讨利用连续流动分析仪测定化学肥料中硝态氮含量可行性。结果表明,流动分析仪法的方法检出限为0.008 g/kg;加标回收率在93.2%~101%;测定结果的相对标准偏差在1.7%~8.3%;所得数据与紫外分光光度计测定结果对比分析,t检验结果表明两种方法无显著差异;两种方法测定数据之间拟合方程为y=0.9782x+0.0768,R2=0.9966。结果表明,连续流动分析仪测试速度快,试剂消耗量少,精密度和准确度满足要求,可用于水溶肥料硝态氮含量的分析测定。  相似文献   

2.
探讨了利用连续流动分析仪测定水溶肥料中的硝态氮的方法.选择含腐植酸、有机、微量元素、大量元素等4类水溶肥料样品,采用水振荡浸提试样,利用连续流动分析仪对浸提液中硝态氮的含量进行测定,并与紫外分光光度计测定数据进行对比,探讨利用连续流动分析仪测定化学肥料中硝态氮含量可行性.结果表明,流动分析仪法的方法检出限为0.008 ...  相似文献   

3.
快速准确测定土壤中铵态氮、硝态氮含量对监测土壤肥力水平和生态环境,指导作物氮肥施用非常重要。选择30份土样,利用全波长扫描式多功能读数仪(酶标仪)结合靛酚蓝分光光度法、硫酸肼还原法测定土壤中铵态氮和硝态氮含量,探讨利用酶标仪测定土壤无机氮含量的可行性。结果显示,利用酶标仪测定土壤铵态氮、硝态氮含量与连续流动分析仪测定结果之间无明显差异,彼此间呈显著线性相关。铵态氮回归直线方程为Y(连续流动分析仪-NH_4~+-N)=0.997 6 X(酶标仪-NH_4~+-N)-0.012 3,相关系数R=0.961 9(n=30,P0.01);硝态氮回归方程为Y(连续流动分析仪-NO_3~--N)=0.959 3 X(酶标仪-NO_3~--N)+0.021 9,相关系数R=0.964 0(n=30,P0.01)。酶标仪测定铵态氮回收率在96.2%~108%,相对标准偏差在10%以内;硝态氮测定回收率为94.9%~110%,且相对标准偏差在5%以内,酶标仪测定土壤铵态氮和硝态氮方法检出限分别为0.068mg/L和0.028mg/L。酶标仪测定土壤无机氮速度快,精密度、准确度较高,消耗试剂少,可用于大批量土壤浸提液中铵态氮和硝态氮含量的快速分析。  相似文献   

4.
快速准确测定土壤中铵态氮、硝态氮含量对监测土壤肥力水平和生态环境,指导作物氮肥施用非常重要。选择30份土样,利用全波长扫描式多功能读数仪(酶标仪)结合靛酚蓝分光光度法、硫酸肼还原法测定土壤中铵态氮和硝态氮含量,探讨利用酶标仪测定土壤无机氮含量的可行性。结果显示,利用酶标仪测定土壤铵态氮、硝态氮含量与连续流动分析仪测定结果之间无明显差异,彼此间呈显著线性相关。铵态氮回归直线方程为Y(连续流动分析仪-NH_4~+-N)=0.997 6 X(酶标仪-NH_4~+-N)-0.012 3,相关系数R=0.961 9(n=30,P<0.01);硝态氮回归方程为Y(连续流动分析仪-NO_3~--N)=0.959 3 X(酶标仪-NO_3~--N)+0.021 9,相关系数R=0.964 0(n=30,P<0.01)。酶标仪测定铵态氮回收率在96.2%~108%,相对标准偏差在10%以内;硝态氮测定回收率为94.9%~110%,且相对标准偏差在5%以内,酶标仪测定土壤铵态氮和硝态氮方法检出限分别为0.068mg/L和0.028mg/L。酶标仪测定土壤无机氮速度快,精密度、准确度较高,消耗试剂少,可用于大批量土壤浸提液中铵态氮和硝态氮含量的快速分析。  相似文献   

5.
快速准确测定土壤中铵态氮、硝态氮含量对监测土壤肥力水平和生态环境,指导作物氮肥施用非常重要。选择30份土样,利用全波长扫描式多功能读数仪(酶标仪)结合靛酚蓝分光光度法、硫酸肼还原法测定土壤中铵态氮和硝态氮含量,探讨利用酶标仪测定土壤无机氮含量的可行性。结果显示,利用酶标仪测定土壤铵态氮、硝态氮含量与连续流动分析仪测定结果之间无明显差异,彼此间呈显著线性相关。铵态氮回归直线方程为Y(连续流动分析仪-NH_4~+-N)=0.997 6 X(酶标仪-NH_4~+-N)-0.012 3,相关系数R=0.961 9(n=30,P0.01);硝态氮回归方程为Y(连续流动分析仪-NO_3~--N)=0.959 3 X(酶标仪-NO_3~--N)+0.021 9,相关系数R=0.964 0(n=30,P0.01)。酶标仪测定铵态氮回收率在96.2%~108%,相对标准偏差在10%以内;硝态氮测定回收率为94.9%~110%,且相对标准偏差在5%以内,酶标仪测定土壤铵态氮和硝态氮方法检出限分别为0.068mg/L和0.028mg/L。酶标仪测定土壤无机氮速度快,精密度、准确度较高,消耗试剂少,可用于大批量土壤浸提液中铵态氮和硝态氮含量的快速分析。  相似文献   

6.
土壤硝态氮反映土壤短期氮素供应水平,实时了解土壤硝态氮的含量为精准农业和农业面源污染防控提供支撑,因此,在线实时检测土壤硝态氮方法突破就显得十分迫切。土壤硝态氮中的硝酸根离子在土壤中的高水溶性和流动性为全固态硝酸根离子选择电极高敏感检测土壤中硝态氮提供了条件,固态硝态氮离子选择电极的离子选择膜反应硝酸根离子在被测溶液中的浓度。采用全固态硝酸根离子选择电极ELIT NO3-,且与温度电极和pH电极融合组成电极阵列对土壤饱和溶液中的硝酸根离子进行检测。设计了高输入阻抗运算放大电路对电极信号进行采集,并通过微处理控制蠕动泵完成土壤硝态氮待测溶液连续流动测定及实时传输结果。实验结果表明,电极响应时间≤15 s,斜率-51.63 mV/decade,线性范围10-5~10-2.2 mol/L,最低检测限10-5.23 mol/L。相对标准差在0.78%~4.5%,加标回收率均在90.0%~110%。与紫外可见分光光度法测试结果相比,相关系数(R2)为0.9952,为土壤硝态氮在现场检测奠定技术基础。  相似文献   

7.
土壤硝态氮反映土壤短期氮素供应水平,实时了解土壤硝态氮的含量为精准农业和农业面源污染防控提供支撑,因此,在线实时检测土壤硝态氮方法突破就显得十分迫切。土壤硝态氮中的硝酸根离子在土壤中的高水溶性和流动性为全固态硝酸根离子选择电极高敏感检测土壤中硝态氮提供了条件,固态硝态氮离子选择电极的离子选择膜反应硝酸根离子在被测溶液中的浓度。采用全固态硝酸根离子选择电极,且与温度电极和pH电极融合组成电极阵列对土壤饱和溶液中的硝态根离子进行检测。设计了高输入阻抗运算放大电路对电极信号进行采集,并通过微处理控制蠕动泵完成土壤硝态氮待测溶液连续流动测量及实时传输结果。实验结果表明,电极响应时间≤15 s,斜率-51.63 mV/decade,线性范围10-5-10-2.2 mol/L,最低检测限10-5.23 mol/L。相对标准差在0.78%-4.47%范围内,加标回收率均在90%-110%以内。与国家标准紫外可见分光光度法测试结果相比,相关系数(R2)为0.9952,为土壤硝态氮在现场检测奠定技术基础。  相似文献   

8.
固定态铵作为一种重要的潜在氮源,准确测定其含量,对于认识土壤肥力的形成机理、生态系统氮循环和保障国家粮食安全具有十分重要的意义。固定态铵最常用的方法是Silva-Bremner法,但该方法试剂配制要求严苛,前处理过程操作繁琐、费时。为了实现快速、准确、安全地测定土壤固定态铵的含量,对前处理过程进行了研究,用酸性氯酸钾溶液处理土壤样品,用水浴代替震荡,并与Silva-Bremner法的结果进行了对比。试验了自动凯氏定氮仪工作参数、酸性氯酸钾的浓度和用量、水浴加热的温度和时间,确定了测定土壤固定态铵的最佳条件。结果表明,称取1克样品加入20毫升氯酸钾-盐酸混合溶液(3%-10%)预处理,用0.5mol/L氯化钾溶液交换、洗涤,残渣加入加5mL氢氟酸-盐酸溶液(5mol/L-1mol/L),在沸水浴加热1.5-2h,用自动凯氏定氮仪蒸馏滴定。对5种类型土壤固定态铵7次测定的结果进行了数据分析,相对标准偏差(RSD)均小于3.87%,最大G值1.49,最大F检验值4.12,最大t检验值0.72,均小于临界值,两种方法测定结果无显著差异。该方法的操作安全性和分析效率得到大幅提高,方法的精密度、准确度满足要求。  相似文献   

9.
建立自动蒸馏装置–滴定法测定土壤水解性氮的方法。对样品处理程序进行了优化,加入25 mL硼酸,60 mL蒸馏水,10 mL 10 mol/L的NaOH,蒸馏时间为380 s,待测液用0.01006 mol/L的HCl溶液进行滴定,测定土壤中水解性氮。方法的检出限为2.34 mg/kg,分别对标准物质GBW 07412a、GBW 07413a、GBW 0715a和GBW 07460进行测定,测定结果的相对标准偏差为1.90-3.75%(n=6),用该方法与碱解扩散法同时对45个不同类型土壤样品的水解性氮进行测定,测定结果无明显差异。该方法适合于土壤水解性氮的检测。  相似文献   

10.
准确测定土壤中有效硅含量可以了解土壤硅素肥力状况,有助于指导施肥、改善土壤质量。同时土壤中有效硅含量作为第三次全国土壤普查必测的一项参数,有利于全面摸清土壤硅的含量水平。文章通过改变浸提方式、浸提剂浓度以及显色方式等参数对柠檬酸浸提-硅钼蓝比色法测试土壤有效硅进行了探讨,对测试过程中的影响因素进行了分析,并进行针对性的优化 ,最后对改进后的测试条件进行方法学研究。结果表明,浸提时间不足、浸提剂浓度偏低以及显色时温度不稳定均会导致所测的有效硅含量偏低。采用连续震荡2h的方式浸提,同时增加浸提剂浓度为0.050mol/L,显色过程全程于35℃水浴中操作等措施可以较好的减少上述因素导致的误差,获得更准确的结果。改进后的方法线性良好,相关系数r为0.9996,检出限为1.0mg/kg,精密度RSD(n=6)最大为2%,准确度相对误差最大为-4.7%。测定结果可靠,可以为第三次全国土壤普查内业检测提供参考和借鉴。  相似文献   

11.
海水中硝酸盐的无阀连续流动分析   总被引:1,自引:0,他引:1  
建立了一种无阀连续流动分析方法和装置,仅用一台多通道蠕动泵传送试剂和样品,无需依靠注入阀、电磁阀和定量环进行试剂或样品的选择和定量输入.样品通过铜-镉还原柱,将硝酸盐还原为亚硝酸盐,然后用重氮-偶氮光度法进行测定.研究结果表明,硝酸盐的线性范围为5 ~ 180 μmol/L,方法检出限为0.27.μmol/L,对10和80 μmol/L硝酸盐溶液连续测定11次,相对标准偏差分别为1.4%和1.3%,不同盐度的实际水样加标回收率在99.4% ~ 106.1%之间.测定结果与流动注射分析法相比,无显著性差异.与流动注射分析相比,无阀设计装置大大降低了成本,操作更加简便,有利于在普通实验室或现场连续监测中推广使用.本方法成功应用于厦门西港海水样品中硝酸盐的测定以及九龙江河口区的硝酸盐走航式监测.  相似文献   

12.
A method was developed and validated for the determination of residues of the organophosphorus nematicide fosthiazate in soil and water by using reversed-phase liquid chromatography with UV detection. Good recoveries (>85%) of fosthiazate residues were obtained from water samples (drinking water, groundwater, and liquid chromatography water) after passage of 0.5-2 L water through solid-phase extraction (SPE) C-18 cartridges and subsequent elution with ethyl acetate. Residues in soil were extracted with methanol-water (75 + 25, v/v) on a wrist-action shaker, and the extract was cleaned up on C-18 SPE cartridges before analysis. The method was validated by analysis of a range of soils with different physicochemical characteristics; recoveries exceeded 87% at fortification levels ranging from 0.02 to 5.0 mg/kg. The precision values obtained for the method, expressed as repeatability and reproducibility, were satisfactory (<11%). Fosthiazate detection limits were 0.025 microg/L and 0.005 mg/kg for water and soil samples, respectively. The decline in the levels of fosthiazate residues in soil was measured after application of fosthiazate to protected tomato cultivation. The dissipation of fosthiazate residues followed first-order kinetics with a calculated half-life of 21 days.  相似文献   

13.
Di‐(2‐ethylhexyl)phthalate (DEHP) was determined in environmental samples such as water and soil. DEHP was extracted from water samples using SPE, whereas for soils pressurized liquid extraction was applied as extraction method, using hexane/acetone (1:1, v/v) as extractant solvent. The use of HPLC coupled to MS provides the basis of the selective determination of DEHP in the analyzed samples. The extraction procedures were validated and good results were found. Recoveries were ranged from 86.0 to 99.8% with RSD lower than 18% and LODs were 0.02 mg/kg and 0.03 μg/L for soils and water, respectively. Finally, the optimized methods were applied to the analysis of real samples and DEHP was not found above the LOQ (0.05 mg/kg) in soil samples whereas it was detected in water samples at concentrations ranging between 0.19 to 0.88 μg/L.  相似文献   

14.
2,7-Dichlorodibenzo-p-dioxin (DCDD) was found to evaporate easily with water vapor from a heated solution. Steam distillation was also effective for the removal of DCDD from DCDD-applied soil; its concentration (250 microg/50g soil) in the original soil decreased to less than 5% after steam distillation for only 20 min. Actual dioxin-polluted soil in Tokorozawa City was partially decontaminated using the same method. These results suggest that steam distillation could be a new remedial method for soils contaminated with persistent environmental pollutants, such as dioxins and polychlorinated biphenyls.  相似文献   

15.
KBrO3—KBr紫外分光光度法测定痕量水杨酸   总被引:5,自引:0,他引:5  
研究了HCl溶液中KBrO3-KBr紫外分光光度法测定水杨酸的条件,建立了测定痕量水杨酸的新方法。结果表明,在0.6mol/LHCl,3*10^-5mol/LKBrO3,5*10^-4mol/LKBr,6*10^-4mol/lKI溶中测定水杨酸,其线性范围为0.2-4.0mg/L,表观摩尔吸光系数为1.9*10^-4L.mol^-1.cm^-1,Sandell为7.3μg/cm^2。sg if e  相似文献   

16.
A highly sensitive method has been developed for the determination of titanium(IV) and iron(III) by ion-pair reversed phase liquid chromatography using sodium 1,2-dihydroxybenzene-3,5-disulfonic acid (Tiron) as a precolumn chelating reagent. The metal - Tiron chelates were separated on a C18 (ODS) column; the mobile phase was a 2:8 (v/v) mixture of acetonitrile and acetate buffer (0.04 mol/L, pH 6.2) containing 2.0 × 10?3 mol/L Tiron, 0.04 mol/L tetrabutylammonium bromide, and 0.1 mol/L potassium nitrate. The detection limits for titanium(IV) and iron(III) are 0.5 and 2.0 μg/L, respectively. The method has been applied to the simultaneous determination of titanium(IV) and iron(III) in river water samples and has furnished highly precise results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号