首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
使用Amberlite CG-120离子交换树脂作为固相萃取剂,预浓缩环境水样中的Cd(Ⅱ),然后用火焰原子吸收分光光度计法(FAAS)测定洗脱液中Cd(Ⅱ)的含量从而确定水样中的Cd(Ⅱ)浓度。实验优化了洗脱液的pH、种类及其浓度、样品和洗脱液流速、吸附剂用量等实验参数,并研究了其他阳离子对Cd(Ⅱ)回收率的干扰效应,获得了最佳的分析灵敏度、准确度、精密度以及回收率。方法检出限为0.1μg/L,线性范围为0.4μg/L~80μg/L。采用该分析方法对自来水、河水、地下水、海水进行加标回收实验,回收率均在95%以上。  相似文献   

2.
任晋  蒋可  徐晓白 《分析化学》2004,32(10):1273-1277
建立了环境水样中痕量除草剂阿特拉津(ATR)及其环境中的主要降解产物Deethylatrazine(DEA),Deisopropylatrazine(DIA),Hydroxyatrazine(HA)的Oasis MCX(磺酸化(二乙烯基苯-N-乙烯基吡咯烷酮)共聚物)小柱离线萃取,HPLC-MS选择离子检测的分析方法。对MCX(60mg,3mL)小柱的萃取条件(样品溶液的pH,上样速率,上样体积,洗脱液pH)进行了优化,得出最佳的实验条件。ATR,DEA,DIA,HA的穿透体积均大于450mL。本实验利用HPLC-APCI选择离子模式对被分析物进行检测,500mL水样的化合物检出限为0.01~0.06μg/L;回收率均大于75%,符合欧盟饮用水中单种农药浓度不应超出0.1μg/L的检测标准。该方法用于官厅水库坝后水样的分析,测出该处水样中ATR为2.04μg/L,DEA为11.4μg/L,DIA为0.75μg/L。  相似文献   

3.
建立了超声辅助基质分散液-液微萃取(UA-DLLME)/气相色谱-串联质谱(GC-MS)同时测定地下和地表水中15种硝基苯、19种苯胺和14种邻苯二甲酸酯类化合物的分析方法。采用Plackett-Burman设计从萃取剂、分散剂体积、萃取温度、萃取时间和离子强度等变量中筛选最显著的影响因素,并利用中心组合设计(CCD)结合响应曲面图优化显著因素,最终确定最佳的萃取条件:10 mL水样在2 g/L NaCl条件下迅速加入0.65 mL乙腈(分散剂)和40μL四氯化碳(萃取剂),于40℃超声2 min,混合液以3 500 r/min离心3 min。结果显示,目标分析物在1~200μg/L质量浓度范围内线性良好,相关系数不低于0.995 8,方法的检出限(MDL)为0.001~0.030μg/L,定量下限(LOQ)为0.004~0.120μg/L,在低、中、高3个加标浓度下的平均回收率为77.4%~113%,相对标准偏差(RSD)均不高于9.6%(n=6)。  相似文献   

4.
在纳米四氧化三铁表面包覆二氧化硅,并以十八烷基三甲氧基硅烷进行化学修饰,用作固相萃取吸附剂富集环境水样中的痕量银离子,用火焰原子吸收光谱法测定,建立了一种灵敏、快速、简便分析银离子的新方法。考察了水样pH值、吸附剂用量、螯合剂用量、振荡时间、洗脱剂、共存离子等对银离子回收率的影响。实验结果表明,对于200 mL水样,在pH 7.0、吸附剂用量为0.1 g、螯合剂5-Br-PADAP(0.5 g/L)用量为0.6 mL、吸附时间为10 min的条件下,材料对Ag+具有较好的吸附性,且用6 mL 1.0 mol/L的硝酸可完全洗脱所吸附的Ag+。在优化实验条件下,检出限(3σ)为0.15μg/L,相对标准偏差(10μg/L,n=6)为1.4%,富集因子达31。分别对河水、湖水样品中Ag+进行检测,加标回收率为85.0%~94.8%。  相似文献   

5.
谭丽超  葛峰  单正军  王懿 《分析化学》2012,40(4):545-550
建立了同时测定污水中7种糖皮质激素的固相萃取-超高效液相色谱串联质谱的分析方法.利用单因素实验优化固相萃取影响因素:洗脱液、洗脱体积、水样pH值及淋洗液.在此基础上,进行L9(34)正交实验.通过直观分析和方差分析区分主次因素,确定了最佳固相萃取条件:洗脱剂为乙酸乙酯,洗脱剂用量为10 mL,pH=5.0,清洗剂为20%甲醇.7种糖皮质激素的检出限为1.56~10.59 ng/L;在20~100 ng/L的3个添加水平范围内的平均回收率为72.5%~101.4%,相对标准偏差(RSD)小于10.9%.  相似文献   

6.
该文提出了一种基于超声辅助离子液体分散液液微萃取/高效液相色谱(HPLC)测定血清及药片中ACC007含量的新方法。在超声辅助下,无需分散剂即可将疏水性离子液体1-辛基-3-甲基咪唑六氟磷酸盐([C8mimPF6])形成的细小液滴分散于样品溶液中,从而有效萃取ACC007,萃取率在94.0%以上。实验对萃取剂种类、萃取剂用量、溶液pH值、萃取时间、冷却和离心时间等萃取条件进行了考察。在优化条件下,ACC007的线性范围为0.20~10.0μg/mL,检出限分别为0.062μg/mL(药片)和0.068μg/mL(血清)。采用该方法对药片和血清中ACC007进行测定,加标回收率为90.5%~103%,相对标准偏差为2.9%~5.1%,结果令人满意。  相似文献   

7.
采用静电纺丝法制备尼龙6纳米纤维膜,结合固相膜萃取-高效液相色谱法测定了矿泉水中的双酚A。对洗脱溶剂及其体积、进样速度、样品体积、样品pH值、尼龙6纳米纤维膜的用量、及其活化方式和使用次数等影响因素进行了研究。结果表明:10mL样品调至pH8.0后,以3mL/min流速通过1.5mg尼龙6纳米纤维膜,300μL甲醇即可将膜上吸附的双酚A完全洗脱,每张膜至少可重复使用6次。在此最优化条件下,方法的线性范围为0.20~20.0μg/L;检出限为0.15μg/L,膜内和膜间的相对标准偏差均小于4.5%(n=6)。本方法应用于6种不同品牌的矿泉水中双酚A的分析测定,在1.0μg/L加标水平下,测得回收率为95.0%,双酚A测得浓度低于0.30μg/L。与固相萃取方法相比,本方法高效、环保,表明尼龙6纳米纤维膜是极具潜力的萃取介质  相似文献   

8.
建立尿液中曲马多的顶空固相微萃取气相色谱质谱联用(HS-SPME-GC/MS)分析方法。利用响应面法对顶空固相微萃取的条件进行优化,在优化的条件下,采用SKF为内标,在选择离子模式下,选取m/z 58(曲马多)和m/z 86(SKF)为定量离子,利用GC/MS对尿液中的曲马多进行定量分析。工作曲线线性范围超过0.05~1.0μg/mL(r2=0.9962)。检测限为0.011μg/mL(S/N=3),定量限为0.038μg/mL(S/N=10),用0.1μg/mL和0.75μg/mL曲马多标准液计算回收率分别在100.20%~109.65%和98.43%~103.82%之间,RSD为5.32%和9.13%(n=5)。建立的方法适用于尿液中曲马多。  相似文献   

9.
建立了水中4种环形和2种线形硅氧烷的顶空固相微萃取/气相色谱-质谱联用分析方法.考察了萃取纤维、萃取温度、萃取时间、水样pH值、解析时间、盐效应等因素对实验结果的影响.优化后的条件为:40mL水、40 μL内标(M4Q,500 μg/L)、NaCl(0.1 g/mL)加入60 mL顶空瓶中,选用65μm聚二甲基硅氧烷-二乙烯基苯(PDMS/DVB)纤维于24℃顶空萃取45 min.萃取完成后将纤维插入气相色谱进样口,于200℃解吸2 min进行定性、定量分析.结果表明,6种目标物的方法检出限为(LOD)2.6~7.8 ng/L,回收率为82%~ 96%,相对标准偏差(RSD)为1.1%~7.9%.  相似文献   

10.
建立了顶空固相微萃取-气相色谱-串联质谱测定水中戊二醛的方法。设计5因素4水平完整的正交试验,通过极差分析获得顶空固相微萃取优化条件。10 mL,pH 1的水样加入6 g NaCl,经非极性PDM S,100μm纤维头于75℃萃取25 min,210℃解析进样0.2 min。采用VF-5(60 m×0.25 mm×0.25μm)色谱柱程序升温分离,选择多反应监测(M RM)模式采集质谱信息。以m/z 82/54为定量离子,以m/z 82/39为定性离子,外标法定量。结果表明,戊二醛质量浓度在0.02~0.6 mg/L范围内线性良好,相关系数(r)>0.9996,方法检出限7μg/L,定量限20μg/L。低(0.04 mg/L)、中(0.1 mg/L)、高(0.4 mg/L)3个水平加标回收率为87.4%~103.7%,相对标准偏差(RSD)<6%。方法适用于测定水中的戊二醛。  相似文献   

11.
Preconcentration of trace amounts of diazinon by carbon mesoporous CMK‐3 in water and biological samples and measurement by high‐performance liquid chromatography were investigated. CMK‐3 was prepared using hexagonal SBA‐15 as the template. The synthesized materials were characterized by X‐Ray diffraction (XRD), Fourier transform infrared spectroscopy, Brunaur–Emmet–Teller, transmission electron microscopy and Boehm titration method. The preconcentration procedure was optimized using a multivariate optimization approach following a two‐stage process. The effect of analytical parameters including the amount of the CMK‐3 as an adsorbent, pH, type and volume of eluent and flow rate of eluent and sample were studied by a screening project, then the effective parameters were optimized by response surface methodology based on central composite design. The average extraction efficiency of diazinon under optimal conditions (CMK‐3 dosage = 25 mg, sample flow rate = 2.5 mL min−1, eluent flow rate = 1.25 mL min−1, volume of methanol as an eluent =3.5 mL and initial pH = 6) was 97.11%, which agrees well with the predicted response value (97.93%). The linearity of the method was in the range of 0.5–100 μg L−1 with a correlation coefficient of 0.997. Enrichment factor, limit of detection and limit of quantification were 285.7, 0.09 and 0.23 μg L−1, respectively. The relative standard deviation (RSD) under optimum conditions was 2.21% (n = 5). The proposed method was applied to determine diazinon in real water and biological samples. Recovery of diazinon from real samples was between 95.80 and 104.94% with an RSD of 0.19–4.65%. Thus, this method is suitable for the preconcentration and determination of diazinon in real water and biological samples.  相似文献   

12.
SPE combined with dispersive liquid–liquid microextration was used for the extraction of ultra‐trace amounts of benzodiazepines (BZPs) including, diazepam, midazolam, and alprazolam, from ultra‐pure water, tap water, fruit juices, and urine samples. The analytes were adsorbed from large volume samples (60 mL) onto octadecyl silica SPE columns. After the elution of the desired compounds from sorbents with 2.0 mL acetone, 0.5 mL of eluent containing 40.0 μL chloroform was injected rapidly into 4.5 mL pure water. After extraction and centrifugation, 2 μL of the sedimented phase was injected into a GC equipped with a flame ionization detector. Several parameters affecting this process were investigated and optimized. Under the optimal conditions, LODs ranged from 0.02 to 0.05 μg/L, a linear dynamic range of 0.1–100 μg/L and relative SDs in the range of 4.4–10.7% were attained. Very high preconcentration factors ranging from 3895–7222 were achieved. The applicability of the method for the extraction of BZPs from different types of complicated matrices, such as tap water, fruit juices, and urine samples, was studied. The obtained results reveal that the proposed method is a good technique for the extraction and determination of BZPs in complex matrices.  相似文献   

13.
A rapid and simple method for the extraction and preconcentration of N-methylcarbamates (NMCs) (carbofuran, carbaryl and promecarb) in water samples using dispersive liquid–liquid microextraction (DLLME) using chemometrics was developed. Influence variables such as volume of extracting (CHCl3) and dispersing solvents (ACN), pH and ionic strength, extraction time and centrifugation time and speed were screened in a 27–4 Plackett–Burman design was investigated. The significant variables were optimized by using a central composite design (CCD) combined with desirability function (DF). At optimum conditions values of variables set as 126 μL chloroform, 1.5 mL acetonitrile, 1 min extraction time, 10 min centrifugation at 4000 rpm min−1, natural pH, 4.7% (w/v) NaCl, the separation was reached in less than 14 min using a C18 column and an isocratic binary mobile phase (acetonitrile: water (50:50, v/v)) with flow rate of 1.0 mL min−1. At optimum conditions method has linear response over 0.001–10 μg mL−1 with detection limit between 0.0001 and 0.0005 μg mL−1 with relative standard deviations (RSDs) in the range 2.18–5.06% (n = 6).  相似文献   

14.
高吭  刘雅珣  柯威  刘凯  倪浏阳  陶涛 《色谱》2020,38(11):1348-1354
公安机关用胶体金尿检法对海洛因滥用者的检测常常受到阿片类镇咳药的干扰,使用传统液-液提取法进行实验室检验,操作效率低,灵敏度不高,无法满足公安机关打击涉毒案件的需要。为此,该研究建立了尿液中吗啡、O 6 -单乙酰吗啡、可待因和乙酰可待因4种阿片类物质的固相萃取和衍生化技术结合气相色谱-质谱联用(GC-MS)同时检测方法。尿样用磷酸盐缓冲液调节至pH=6后,经MCX固相萃取柱净化,用N -甲基-N -(三甲基硅烷基)三氟乙酰胺(MSTFA)对吗啡、O 6 -单乙酰吗啡、可待因进行衍生化,供GC-MS检测。考察了上样和洗脱流速、淋洗液中甲酸体积分数、洗脱液中氨水体积分数、3%(v/v)甲酸甲醇淋洗液体积和固相萃取柱吹干时间对萃取效果的影响。确定上样和洗脱流速1.0 mL/min,淋洗液中甲酸体积分数3%,洗脱液中氨水体积分数5%,3%(v/v)甲酸甲醇淋洗液体积1 mL,吹干时间1 min为最佳条件。在此条件下,4种阿片类物质在0.02~0.8 μg/mL范围内线性关系良好(r 2 ≥0.998),检出限(LOD)为0.0016~0.0039 μg/mL,定量限(LOQ)为0.0054~0.0128 μg/mL,当标准添加水平为0.02、0.1、0.2 μg/mL时,回收率为93.0%~110.3%。该方法结合自动化技术,对固相萃取条件精确控制,操作简便、快速、灵敏、准确,适合尿液中吗啡等4种阿片类物质快速测定,可用于海洛因吸食者的大规模监控,并能准确排除因服用含阿片类镇咳药导致的吗啡胶体金尿检假阳性。  相似文献   

15.
In the present work, an electrothermal atomic absorption spectrometric method has been developed for the determination of ultra‐trace amounts of rhodium after adsorption of its 2‐(5‐bromo‐2‐pyridylazo)‐5‐diethylaminophenol/tetraphenylborate ion associated complex at the surface of alumina. Several factors affecting the extraction efficiency such as the pH, type of eluent, sample and eluent flow rates, sorption capacity of alumina and sample volume were investigated and optimized. The relative standard deviation for eight measurements of 0.1 ng/mL of rhodium was ±6.3%. In this method, the detection limit was 0.003 ng/mL in the original solution. The sorption capacity of alumina and the linear range for Rh(III) were evaluated as 0.8 mg/g and 0.015–0.45 ng/mL in the original solution, respectively. The proposed method was successfully applied for the extraction and determination of rhodium content in some food and standard samples with high recovery values.  相似文献   

16.
余晟  黄克靖  余萌  韦彩云 《分析化学》2012,(7):1065-1070
利用石墨烯固相萃取柱萃取、高效液相色谱分离紫外检测,建立了戊唑醇、乙霉威、晴菌唑、精甲霜灵和扑草净5种农药同时检测的方法。确定的优化条件为:洗脱剂为5mL二氯甲烷、样品溶液的pH=7.0,样品体积为200mL。在此条件下,扑草净、戊唑醇、乙霉威、晴菌唑和精甲霜灵在0.05~100μg/L浓度范围内与峰面积呈良好的线性关系,相关系数为0.895~0.992;信噪比为3时,5种农药的检出限为1.2~5.2ng/L;方法的精密度为1.4%~4.6%。将本方法用于环境水样标准加入分析,相对回收率为80.5%~107.6%;相对标准偏差均小于5%。  相似文献   

17.
Abstract

A simple HPLC method with minimal sample preparation and good reproducibility for the determination of trazodone in serum is described. Basified serum samples were extracted using ethyl acetate containing diazepam as the internal standard (IS). Chromatography was performed on a cyanopropylsilane column with 15 μL sample injection. The mobile phase consisted of 0.02 M ammonium phosphate, pH 7.5 : acetonitrile (70:30 v/v). The eluent was monitored at 220 nm. The serum standard curve was linear from 10.0 to 8000.0 ng/mL serum. The overall within-run quality control CV was 6.3% for five concentrations (20.0, 40.0, 100.0, 250.0 and 1000.0 ng/mL) and the overall recovery from serum was 85.4%. This method has been applied to the analysis of human serum samples.  相似文献   

18.
Pinus koraiensis nut-coated film is a kind of by-product of nut processing, which has been shown to contain flavonoids, polyphenols, and other substances that can be used to produce natural antioxidant extracts. In this study, response surface methodology (RSM) was used to optimize the extraction process of flavonoids of P. koraiensis nut-coated film (PNF), and macroporous resin HPD600 was used to purify PNF (P-PNF). Its antioxidant activity was examined by DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging capacity, oxygen free radical absorption capacity (ORAC), total oxygen radical capture (TRAP), and iron ion reduction capacity. Under the ideal extraction conditions comprising a cellulase dosage of 90 U/g, a material/liquid ratio of 1:20 (g/mL), and an extraction time of 2 h, the PNF yield was 3.37%. Purification conditions were sample concentration of 2.0 mg/mL, pH of 5, water washing volume of 3 bed volume (BV), eluent ethanol concentration of 50%, and volume of 2 BV. The P-PNF recovery was 84.32%, and purity increased from 33.80% to 61.70%. Additionally, P-PNF showed increased antioxidant activity compared to PNF. Cumulatively, this study obtained the optimal values for the process parameters in order to achieve the maximum rates of extraction of PNF for economically optimal production at an industrial scale.  相似文献   

19.
An ultra-fast and improved analytical methodology based on microextraction by packed sorbent (MEPS) combined with ultra-performance LC (UPLC) was developed and validated for determination of (E)-resveratrol in wines. Important factors affecting the performance of MEPS such as the type of sorbent material (C2, C8, C18, SIL, and M1), number of extraction cycles, and sample volume were studied. The optimal conditions of MEPS extraction were obtained using C8 sorbent and small sample volumes (50-250 μL) in one extraction cycle (extract-discard) and in a short time period (about 3 min for the entire sample preparation step). (E)-Resveratrol was eluted by 1×250 μL of the mixture containing 95% methanol and 5% water, and the separation was carried out on a high-strength silica HSS T3 analytical column (100 mm × 2.1 mm, 1.8 μm particle size) using a binary mobile phase composed of aqueous 0.1% formic acid (eluent A) and methanol (eluent B) in the gradient elution mode (10 min of total analysis). The method was fully validated in terms of linearity, detection (LOD) and quantification (LOQ) limits, extraction yield, accuracy, and inter/intra-day precision, using a Madeira wine sample (ET) spiked with (E)-resveratrol at concentration levels ranging from 5 to 60 μg/mL. Validation experiments revealed very good recovery rate of 95±5.8% RSD, good linearity with r(2) values >0.999 within the established concentration range, excellent repeatability (0.52%), and reproducibility (1.67%) values (expressed as RSD), thus demonstrating the robustness and accuracy of the MEPS(C8) /UPLC-photodiode array (PDA) method. The LOD of the method was 0.21 μg/mL, whereas the LOQ was 0.68 μg/mL. The validated methodology was applied to 30 commercial wines (24 red wines and six white wines) from different grape varieties, vintages, and regions. On the basis of the analytical validation, the MEPS(C8)/UPLC-PDA methodology shows to be an improved, sensitive, and ultra-fast approach for determination of (E)-resveratrol in wines with high resolving power within 6 min.  相似文献   

20.
A sensitive and rapid method based on alcohol‐assisted dispersive liquid–liquid microextraction followed by high‐performance liquid chromatography for the determination of fluoxetine in human plasma and urine samples was developed. The effects of six parameters on the extraction recovery were investigated and optimized utilizing Plackett–Burman design and Box–Benken design, respectively. According to the Plackett–Burman design results, the volume of disperser solvent, extraction time, and stirring speed had no effect on the recovery of fluoxetine. The optimized conditions included a mixture of 172 μL of 1‐octanol as extraction solvent and 400 μL of methanol as disperser solvent, pH of 11.3 and 0% w/v of salt in the sample solution. Replicating the experiment in optimized condition for five times, gave the average extraction recoveries equal to 90.15%. The detection limit of fluoxetine in human plasma was obtained 3 ng/mL, and the linearity was in the range of 10–1200 ng/mL. The corresponding values for human urine were 4.2 ng/mL with the linearity range from 10 to 2000 ng/mL. Relative standard deviations for intra and inter day extraction of fluoxetine were less than 7% in five measurements. The developed method was successfully applied for the determination of fluoxetine in human plasma and urine samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号