首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《中国化学》2017,35(7):1098-1108
In this study, chemical reduced graphene‐silver nanoparticles hybrid (AgNPs @CR‐GO ) with close‐packed AgNPs structure was used as a conductive matrix to adsorb enzyme and facilitate the electron transfer between immobilized enzyme and electrode. A facile route to prepare AgNPs @CR‐GO was designed involving in β ‐cyclodextrin (β ‐CD ) as reducing and stabilizing agent. The morphologies of AgNPs were regulated and controlled by various experimental factors. To fabricate the bioelectrode, AgNPs @CR‐GO was modified on glassy carbon electrode followed by immobilization of glucose oxidase (GOx ) or laccase. It was demonstrated by electrochemical testing that the electrode with close‐packed AgNPs provided high GOx loading (Γ =4.80 × 10−10 mol•cm−2) and fast electron transfer rate (k s=5.76 s−1). By employing GOx based‐electrode as anode and laccase based‐electrode as cathode, the assembled enzymatic biofuel cell exhibited a maximum power density of 77.437 μW •cm−2 and an open‐circuit voltage of 0.705 V.  相似文献   

2.
Multiwall carbon nanotubes (CNTs)‐modified electrode has been prepared by using ionic liquid (IL) as the binder. The as‐prepared CNTs‐IL composite modified electrode has good biocompatibility and is a suitable matrix to immobilize biomolecules. Glucose oxidase (GOx), containing flavin adenine dinucleotide as active site, stably adsorbed on modified electrode surface has resulted in the direct electron transfer. The electron transfer rate of 9.08 s?1 obtained is much higher than that of GOx adsorbed on the CNTs papers (1.7 s?1), and the process is more reversible with small redox peak separation of 23 mV. This may be due to the synergetic promotion of CNTs and IL to electron transfer of the protein, especially the IL as the binder, showing better electrochemical properties than that of chitosan and Nafion. Furthermore, GOx adsorbed at the modified electrode exhibits good stability and keeps good electrocatalytic activity to glucose with broad linear range up to 20 mM. Besides, the simple preparation procedure and easy renewability make the system a basis to investigate the electron transfer kinetics and biocatalytic performance of GOx and provide a promising platform for the development of biosensors.  相似文献   

3.
Here we report the unique property of a preanodized screen-printed carbon electrode (SPCE1) that can allow direct electron transfer (DET) reaction of glucose oxidase (GOx). The GOx can be immobilized in the composite of oxygen functionalities and edge plane sites generated during preanodization without additional cross-linking agents. The electron transfer rate of GOx is greatly enhanced to 4.38 s−1 as a result of the conformational change of GOx in the microenvironment enabling the accessibility of active site for GOx to the electrode. The analytical versatility is further improved with the aid of Nafion film. As a consequence, the as-prepared electrode can be used as a glucose biosensor and the number of potential foreign species is then restricted by molecular size, permeation and/or (bio)chemical reaction. Most importantly, the disposable nature of the proposed electrode is expected to promote the DET-related researches.  相似文献   

4.
通过将葡萄糖氧化酶固载于壳聚糖-纳米金复合膜内所构置的传感器,实现了葡萄糖氧化酶的直接电化学,并采用循环伏安法与电化学阻抗法对修饰电极进行了表征。研究表明:在除氧缓冲溶液中,葡萄糖氧化酶-壳聚糖-纳米金复合膜修饰电极表现出一对良好的氧化还原峰,这对峰归因于葡萄糖氧化酶的氧化还原,证明葡萄糖氧化酶被成功固载于复合膜内。电子传递速率常数为15.6 s-1,说明葡萄糖氧化酶的电活性中心与电极之间的电子传递很快。将壳聚糖与纳米金相结合还提高了葡萄糖氧化酶在复合膜内的稳定性并保持其生物活性,并可以用于葡萄糖检测。计算得到其表观米氏常数为10.1 mmol·L-1。而且,该生物传感器可以用于血样中葡萄糖含量的测定。  相似文献   

5.
The direct electrochemistry of redox enzymes (or proteins) has received more and more attention[1—9]. These studies developed an electrochemical basis for the investigation of enzyme structure, mechanisms of redox transformations of enzyme molecules and metabolic processes involving redox transformations. From these studies, one can also find potential appli-cations of enzymes in biotechnology. For example, if an enzyme immobilized on electrode surface is ca-pable of the direct electron tra…  相似文献   

6.
A study of the electron transfer for a non-glycosylated redox variant of GOx is reported, immobilised onto an electrode via a polyhistidine tag. The non-glycosylated variant allows the enzyme to be brought closer to the electrode, and within charge transfer distances predicted by Marcus' theory. The enzyme-electrode-hybrid shows direct very fast reversible electrochemical electron transfer, with a rate constant of ~ 350 s− 1 under anaerobic conditions. This is 2 orders of magnitude faster than the enzyme-free flavin adenine dinucleotide (FAD). These results are discussed in the context of the conformation of FAD in the active site of GOx. Further data, presented in the presence of oxygen, show a reduced electron transfer rate (~ 160 s− 1) that may be associated with the oxygen interaction with the histidines in the active site. These residues are implicated in the proton transfer mechanism and thus suggest that the presence of oxygen may have a profound effect in attenuating the direct electron transfer rate and thus moderating ‘short-circuit’ incidental electron transfer between proteins.  相似文献   

7.
Coupling nanotechnology with biocatalysis, a highly sensitive glucose biosensor for the study of electrochemical behaviors of glucose oxidase (GOx) was proposed by using monkshoodvine root–bark like carbon (MLC) as the platform for the biocatalytic deposition of AuNPs. The biosensor showed a linear range from 0.25 to 130 μM with a detection limit of 0.1 μM (S/N = 3) towards glucose and sensitivity of 3010 μA/mM. K value was calculated to be 67.4 μM. Furthermore, the proposed AuNPs/GOx–MLC modified pyrolytic graphite electrode (AuNPs/GOx–MLC/PGE) achieved direct electron transfer of GOx. Γ* was calculated to be 2.79 × 10?11 mol/cm2 and ks was 1.79 s?1. It also showed a remarkable electrocatalysis towards glucose.  相似文献   

8.
We have studied the direct electrochemistry of glucose oxidase (GOx) immobilized on electrochemically fabricated graphite nanosheets (GNs) and zinc oxide nanoparticles (ZnO) that were deposited on a screen printed carbon electrode (SPCE). The GNs/ZnO composite was characterized by using scanning electron microscopy and elemental analysis. The GOx immobilized on the modified electrode shows a well-defined redox couple at a formal potential of ?0.4 V. The enhanced direct electrochemistry of GOx (compared to electrodes without ZnO or without GNs) indicates a fast electron transfer at this kind of electrode, with a heterogeneous electron transfer rate constant (Ks) of 3.75 s?1. The fast electron transfer is attributed to the high conductivity and large edge plane defects of GNs and good conductivity of ZnO-NPs. The modified electrode displays a linear response to glucose in concentrations from 0.3 to 4.5 mM, and the sensitivity is 30.07 μA mM?1 cm?2. The sensor exhibits a high selectivity, good repeatability and reproducibility, and long term stability. Figure
Graphical representation for the fabrication of GNs/ZnO composite modified SPCE and the immobilization of GOx  相似文献   

9.
A new hemoglobin (Hb) and room temperature ionic liquid modified carbon paste electrode was constructed by mixing Hb with 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMIMPF6) and graphite powder together. The Hb modified carbon ionic liquid electrode (Hb‐CILE) was further characterized by FT‐IR spectra, scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). Hb in the carbon ionic liquid electrode remained its natural structure and showed good direct electrochemical behaviors. A pair of well‐defined quasireversible redox peaks appeared with the apparent standard potential (E′) as ?0.334 (vs. SCE) in pH 7.0 phosphate buffer solution (PBS). The electrochemical parameters such as the electron transfer number (n), the electron transfer coefficient (α) and the heterogeneous electron transfer kinetic constant (ks) of the electrode reaction were calculated with the results as 1.2, 0.465 and 0.434 s?1, respectively. The fabricated Hb‐CILE exhibited excellent electrocatalytic activity to the reduction of H2O2. The calibration range for H2O2 quantitation was between 8.0×10?6 mol/L and 2.8×10?4 mol/L with the linear regression equation as Iss (μA)=0.12 C (μmol/L)+0.73 (n=18, γ=0.997) and the detection limit as 1.0×10?6 mol/L (3σ). The apparent Michaelis–Menten constant (KMapp) of Hb in the modified electrode was estimated to be 1.103 mmol/L. The surface of this electrochemical sensor can be renewed by a simple polishing step and showed good reproducibility.  相似文献   

10.
A new electrochemical biosensor was constructed by immobilization of hemoglobin (Hb) on a DNA modified carbon ionic liquid electrode (CILE), which was prepared by using 1‐ethyl‐3‐methylimidazolium tetrafluoroborate (EMIMBF4) as the modifier. UV‐vis absorption spectroscopic result indicated that Hb remained its native conformation in the composite film. The fabricated Nafion/Hb/DNA/CILE was characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). A pair of well‐defined redox peaks was obtained on the modified electrode, indicated that the Nafion and DNA composite film provided an excellent biocompatible microenvironment for keeping the native structure of Hb and promoting the direct electron transfer rate of Hb with the basal electrode. The electrochemical parameters of Hb in the composite film were further calculated with the results of the charge transfer coefficient (α) and the apparent heterogeneous electron transfer rate constant (ks) as 0.41 and 0.31 s?1. The proposed electrochemical biosensor showed good electrocatalytic response to the reduction of trichloroacetic acid (TCA), H2O2, NO and the apparent Michaelis–Menten constant (KMapp) for the electrocatalytic reaction was calculated, respectively.  相似文献   

11.
Multi‐walled carbon nanotubes (MWNTs) were dispersed in the ionic liquid [BMIM][BF4] to form a uniform black suspension. Based on it, a novel glucose oxidase (GOx)‐hyaluronic (HA)‐[BMIM][BF4]‐MWNTs/GCE modified electrode was fabricated. UV‐vis spectroscopy confirmed that GOx immobilized in the composite film retained its native structure. The experimental results of EIS indicated MWNTs, [BMIM][BF4] and HA were successfully immobilized on the surface of GCE and [BMIM][BF4]‐MWNTs could obviously improve the diffusion of ferricyanide toward the electrode surface. The experimental results of CV showed that a pair of well‐defined and quasi‐reversible peaks of GOx at the modified electrode was exhibited, and the redox reaction of GOx at the modified electrode was surface‐confined and quasi‐reversible electrochemical process. The average surface coverage of GOx and the apparent Michaelis‐Menten constant were 8.5×10−9 mol/cm2 and 9.8 mmol/L, respectively. The cathodic peak current of GOx and the glucose concentration showed linear relationship in the range from 0.1 to 2.0 mmol/L with a detection limit of 0.03 mmol/L (S/N=3). As a result, the method presented here could be easily extended to immobilize and obtain the direct electrochemistry of other redox enzymes or proteins.  相似文献   

12.

We have studied the direct electrochemistry of glucose oxidase (GOx) immobilized on electrochemically fabricated graphite nanosheets (GNs) and zinc oxide nanoparticles (ZnO) that were deposited on a screen printed carbon electrode (SPCE). The GNs/ZnO composite was characterized by using scanning electron microscopy and elemental analysis. The GOx immobilized on the modified electrode shows a well-defined redox couple at a formal potential of −0.4 V. The enhanced direct electrochemistry of GOx (compared to electrodes without ZnO or without GNs) indicates a fast electron transfer at this kind of electrode, with a heterogeneous electron transfer rate constant (Ks) of 3.75 s−1. The fast electron transfer is attributed to the high conductivity and large edge plane defects of GNs and good conductivity of ZnO-NPs. The modified electrode displays a linear response to glucose in concentrations from 0.3 to 4.5 mM, and the sensitivity is 30.07 μA mM−1 cm−2. The sensor exhibits a high selectivity, good repeatability and reproducibility, and long term stability.

Graphical representation for the fabrication of GNs/ZnO composite modified SPCE and the immobilization of GOx

  相似文献   

13.
Glucose oxidase (GOD) was encapsulated in chitosan matrix and immobilized on a glassy carbon electrode, achieving direct electron transfer (DET) reaction between GOD and electrode without any nano‐material. On basis of such DET, a novel glucose biosensor was fabricated for direct bioelectrochemical sensing without any electron‐mediator. GOD incorporated in chitosan films gave a pair of stable, well‐defined, and quasireversible cyclic voltammetric peaks at about ?0.284 (Epa) and ?0.338 V (Epc) vs. Ag/AgCl electrode in phosphate buffers. And the peak is located at the potentials characteristic of FAD redox couples of the proteins. The electrochemical parameters, such as midpoint potential (E1/2) and apparent heterogeneous electron‐transfer rate constants (ks) were estimated to ?0.311 V and 1.79 s?1 by voltammetry, respectively. Experimental results indicate that the encapsulated GOD retains its catalytic activity for the oxidation of glucose. Such a GOD encapsulated chitosan based biosensor revealed a relatively rapid response time of less than 2 min, and a sufficient linear detection range for glucose concentration, from 0.60 to 2.80 mmol L?1 with a detection limit of 0.10 mmol L?1 and electrode sensitivity of 0.233 μA mmol?1. The relative standard deviation (RSD) is under 3.2% (n=7) for the determination of practical serum samples. The biologic compounds probably existed in the sample, such as ascorbic acid, uric acid, dopamine, and epinephrine, do not affect the determination of glucose. The proposed method is satisfactory to the determination of human serum samples compared with the routine hexokinase method. Both the unique electrical property and biocompatibility of chitosan enable the construction of a good bio‐sensing platform for achieved DET of GOD and developed the third‐generation glucose biosensors.  相似文献   

14.
A new nanomaterial was prepared by grafting a layer of sulfonated polyaniline network (SPAN-NW) on to the surface of multi-walled carbon nanotube (MWNT) and effectively utilized for immobilization of an enzyme and for the fabrication of a biosensor. SPAN-NW was formed on the surface of MWNT by polymerizing a mixture of diphenyl amine 4-sulfonic acid (DPASA), 4-vinyl aniline (VA) and 2-acrylamido-2-methyl-1-propane sulfonic acid (APASA) in the presence of amine functionalized MWNT (MWNT-NH2). The MWNT-g-SPAN-NW was immobilized with glucose oxidase (GOx) to fabricate the SPAN-NW/GOx biosensor. MWNT-g-SPAN-NW/GOx electrode showed direct electron transfer (DET) for GOx with a fast heterogeneous electron transfer rate constant (ks) of 4.11 s− 1. The amperometric current response of MWNT-g-SPAN-NW/GOx biosensor shows linearity up to 9 mM of glucose, with a correlation coefficient of 0.99 and a detection limit of 0.11 μM (S/N = 3). At a low applied potential of − 0.1 V, MWNT-g-SPAN-NW/GOx electrode possesses high sensitivity (4.34 μA mM− 1) and reproducibility towards glucose.  相似文献   

15.
We report on a novel amperometric glassy carbon biosensing electrode for glucose. It is based on the immobilization of a highly sensitive glucose oxidase (GOx) by affinity interaction on carbon nanotubes (CNTs) functionalized with iminodiacetic acid and metal chelates. The new technique for immobilization is exploiting the affinity of Co(II) ions to the histidine and cysteine moieties on the surface of GOx. The direct electrochemistry of immobilized GOx revealed that the functionalized CNTs greatly improve the direct electron transfer between GOx and the surface of the electrode to give a pair of well-defined and almost reversible redox peaks and undergoes fast heterogeneous electron transfer with a rate constant (k s) of 0.59?s?1. The GOx immobilized in this way fully retained its activity for the oxidation of glucose. The resulting biosensor is capable of detecting glucose at levels as low as 0.01?mM, and has excellent operational stability (with no decrease in the activity of enzyme over a 10?days period). The method of immobilizing GOx is easy and also provides a model technique for potential use with other redox enzymes and proteins.
Figure
This paper reports a novel amperometric biosensor for glucose based on the immobilization of the glucose oxidase (GOx) by affinity interaction on carbon nanotubes (CNTs) functionalized with iminodiacetic acid and metal chelates. The GOx immobilized in this way fully retained its activity for the oxidation of glucose. The resulting biosensor exhibited high sensitivity, good stability and selectivity.  相似文献   

16.
Nanohybrids of chemically modified graphene (CMG) and ionic liquid (IL) were prepared by sonication to modify the electrode. The modified CMG‐IL electrodes showed a higher current and smaller peak‐to‐peak potential separation than a bare electrode due to the promoted electron transfer rate. Furthermore, the glucose oxidase (GOx) immobilized on the modified electrode displayed direct electron transfer rate and symmetrical redox potentials with a linear relationship at different scan rates. The fabricated GOx/CMG‐IL electrodes were developed selective glucose biosensor with respect to a sensitivity of 0.64 μA mM?1, detection limit of 0.376 mM, and response time of <5 s.  相似文献   

17.
For the first time silicon nitride (Si3N4) nanoparticles was used for preparation electrochemical biosensor. GOx immobilized on the Si3N4 nanoparticles exhibits facile and direct electrochemistry. The surface coverage and heterogeneous electron transfer rate constant (ks) of immobilized GOx were 6.3×10?13 mol cm?2 and 47.4±0.3 s?1. The sensitivity, linear concentration range and detection limit of the biosensor for glucose detection were 38.57 µA mM?1 cm?2, 25 µM to 8 mM and 6.5 µM, respectively. This biosensor also exhibits good stability, reproducibility and long life time. These indicate Si3N4 nanoparticles is good candidate material for construction of third generation biosensor and bioelectronics devices.  相似文献   

18.
An effective, stable enzymatic glucose biosensor was fabricated on a glassy carbon electrode (GCE) surface using simple multicomposite materials (MCM): a solution of prepared poly(diallyldimethylammonium chloride)‐capped gold nanoparticles‐nickel ferrite particles‐carbon nanotubes‐chitosan (PDDA‐AuNPs‐NiFe2O4‐CNTs‐CHIT), electropolymerization of poly(o‐phenylenediamine) (PoPD) and immobilization of glucose oxidase (GOx). Biocompatibility and synergy of the MCM enhanced the immobilization and the reaction of GOx and as well as the electron transfer from an oxidation reaction of hydrogen peroxide in the system. The NiFe2O4 was synthesized by co‐precipitation and calcined at 700 °C. Characterization was carried out by field emission scanning electron microscopy (FE‐SEM), energy‐dispersive X‐ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR) and X‐ray diffraction (XRD) which presented both tetrahedral and octahedral metal stretching with a cubic NiFe2O4 crystal phase. The GOx/PoPD/MCM/GCE yielded a 0.77 s?1 charge transfer rate constant (Ks), a 2.28×10?6 cm2 s?1 diffusion coefficient value (D), a 0.21 mm2 electroactive surface area (Ae) and a 1.93×10?8 mol cm?2 surface concentration ( ) as determined by cyclic voltammetry. The modified electrode showed a durable operation time (n=97, more than 50 % I), repeatability (%RSD=0.38, n=10), reproducibility (%RSD=1.60, n=10), high sensitivity (853.07 μA mM?1 cm?2), selectivity without effects of electroactive species (aspirin, uric acid, caffeine, cholesterol, ascorbic acid and dopamine) and two linear ranges from 0.5 to 10 μM (R2=0.998) and 10 to 15,000 μM (R2=0.991) with a low detection limit (0.35 μM, S/N=3). Its Michaelis‐Menten constant (Km) was calculated as 93.51 μM with 46.30 μA maximum current (Imax). This proposed simple method was successfully applied for glucose determination in human blood samples.  相似文献   

19.
《中国化学会会志》2018,65(9):1127-1135
In this paper, a WS2 nanosheet was modified on the surface of a carbon ionic liquid electrode (CILE), and horseradish peroxidase (HRP) was further fixed on the electrode with a Nafion film. Direct electrochemistry and bioelectrocatalysis of HRP incorporated on the modified electrode were investigated in detail. On Nafion/HRP/WS2/CILE, a pair of well‐defined quasi‐reversible redox peaks appeared on the cyclic voltammogram, indicating that the presence of the WS2 nanosheet on the electrode surface could provide a specific interface with large surface area for HRP and its direct electron transfer rate was greatly enhanced. The formal potential (E0) obtained was –0.179 V, which was the typical feature of heme Fe(III)/Fe(II) in HRP. The electron transfer coefficient (α) and the heterogeneous electron transfer rate constant (ks) of HRP were calculated as 0.44 and 1.01 s–1, respectively. This HRP‐modified electrode showed excellent electrocatalytic activity for the reduction of trichloroacetic acid and NaNO2 with a wide linear range and low detection limit. Real samples were detected by this proposed method, indicating the successful fabrication of a new third‐generation electrochemical enzyme sensor utilizing the WS2 nanosheet.  相似文献   

20.
Molecular modeling, electrochemical methods, and quartz crystal microbalance were used to characterize immobilized hexameric tyrosine‐coordinated heme protein (HTHP) on bare carbon or on gold electrodes modified with positively and negatively charged self‐assembled monolayers (SAMs), respectively. HTHP binds to the positively charged surface but no direct electron transfer (DET) is found due to the long distance of the active sites from the electrode surfaces. At carboxyl‐terminated surfaces, the neutrally charged bottom of HTHP can bind to the SAM. For this “disc” orientation all six hemes are close to the electrode and their direct electron transfer should be efficient. HTHP on all negatively charged SAMs showed a quasi‐reversible redox behavior with rate constant ks values between 0.93 and 2.86 s?1 and apparent formal potentials ${E{{0{^{\prime }}\hfill \atop {\rm app}\hfill}}}$ between ‐131.1 and ‐249.1 mV. On the MUA/MU‐modified electrode, the maximum surface concentration corresponds to a complete monolayer of the hexameric HTHP in the disc orientation. HTHP electrostatically immobilized on negatively charged SAMs shows electrocatalysis of peroxide reduction and enzymatic oxidation of NADH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号