首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51篇
  免费   13篇
化学   58篇
力学   1篇
数学   1篇
物理学   4篇
  2020年   2篇
  2017年   1篇
  2016年   7篇
  2015年   10篇
  2014年   12篇
  2013年   5篇
  2012年   2篇
  2011年   4篇
  2010年   2篇
  2009年   3篇
  2008年   5篇
  2007年   3篇
  2006年   3篇
  2003年   1篇
  2001年   1篇
  1997年   2篇
  1993年   1篇
排序方式: 共有64条查询结果,搜索用时 78 毫秒
1.
In the present study, we report the simultaneous electrochemical determination of hydroquinone (HQ), catechol (CC) and resorcinol (RC) at gold nanoparticles (Au‐NPs) decorated reduced graphene oxide (RGO) modified electrode. An enhanced and well defined peak current response with a better peak separation of HQ, CC and RC is observed at RGO/Au‐NPs composite than that of RGO and Au‐NPs modified electrodes. The fabricated modified electrode shows a wide linear response in the concentration range of 3–90 µM, 3–300 µM and 15–150 µM for HQ, CC and RC, respectively. The detection limit of HQ, CC and RC is found as 0.15 µM, 0.12 µM and 0.78 µM, respectively.  相似文献   
2.
RGa {R=HC[C(Me)N(2,6‐iPr2C6H3)]2} reacts with Sb(NMe2)3 with insertion into the Sb? N bond and elimination of RGa(NMe2)2 ( 2 ), yielding the Ga‐substituted distibene R(Me2N)GaSb?SbGa(NMe2)R ( 1 ). Thermolysis of 1 proceeded with elimination of RGa and 2 and subsequent formation of the bicyclo[1.1.0]butane analogue [R(Me2N)Ga]2Sb4 ( 3 ).  相似文献   
3.

We have studied the direct electrochemistry of glucose oxidase (GOx) immobilized on electrochemically fabricated graphite nanosheets (GNs) and zinc oxide nanoparticles (ZnO) that were deposited on a screen printed carbon electrode (SPCE). The GNs/ZnO composite was characterized by using scanning electron microscopy and elemental analysis. The GOx immobilized on the modified electrode shows a well-defined redox couple at a formal potential of −0.4 V. The enhanced direct electrochemistry of GOx (compared to electrodes without ZnO or without GNs) indicates a fast electron transfer at this kind of electrode, with a heterogeneous electron transfer rate constant (Ks) of 3.75 s−1. The fast electron transfer is attributed to the high conductivity and large edge plane defects of GNs and good conductivity of ZnO-NPs. The modified electrode displays a linear response to glucose in concentrations from 0.3 to 4.5 mM, and the sensitivity is 30.07 μA mM−1 cm−2. The sensor exhibits a high selectivity, good repeatability and reproducibility, and long term stability.

Graphical representation for the fabrication of GNs/ZnO composite modified SPCE and the immobilization of GOx

  相似文献   
4.
In the present study, a model is presented to optimize the fabrication parameters of natural fiber reinforced polyester matrix composites with dual fillers. In particular, jute fiber mat was chosen as reinforcement and eggshell powder (ESP) and montmorillonite nanoclay (NC) were selected as fillers. The weight per square meter (GSM) of the fiber, the weight percentage of ESP and NC have been chosen as independent variables and the influence of these variables on tensile, flexural and impact strength of the composite has been inspected. The permutations of the different combinations of factors are intended to accomplish higher interfacial strength with the lowest possible number of tested specimens. The experiments were designed by the Taguchi strategy and a novel multi-objective optimization technique named COPRAS (COmplex PRoportional ASsessment of alternatives) was used to determine the optimal parameter combinations. Affirmation tests were performed with the optimal parameter settings and the mechanical properties were evaluated and compared. Experimental results show that fiber GSM and eggshell powder content are significant variables that improve mechanical strength, while the nanoclay appears less important.  相似文献   
5.
The surfactant–cobalt(III) complex, cis-[Co(trien)(4AMP)(DA)](ClO4)3, trien = triethylenetetramine, 4AMP = 4-aminopyridine, DA = dodecylamine was synthesized and characterized by various spectroscopic and physico-chemical techniques. The critical micelle concentration (CMC) value of this surfactant–cobalt(III) complex in aqueous solution was found out from conductance measurements. The conductivity data (at 303, 308, 313, 318 and 323 K) were used for the evaluation of the temperature-dependent CMC and the thermodynamics of micellization (ΔG m ° , ΔHm and ΔS m ° ). Also the kinetics of reduction of this surfactant–cobalt(III) complex by hexacyanoferrate(II) ion in micelles, β-cyclodextrin, ionic liquids (ILs) and in liposome vesicles (DPPC) media were studied at different temperature. The rate constant for the electron transfer reaction in micelles was found to increase with increase in the initial concentration of the surfactant–cobalt(III) complex. This peculiar behaviour of dependence of second-order rate constant on the initial concentration of one of the reactants has been attributed to the presence of various concentration of micelles under different initial concentration of the surfactant–cobalt(III) complex in the reaction medium. Inclusion of the long aliphatic chain of the surfactant complex ion into β-cyclodextrin leads to decrease in the rate constant. Below the phase transition temperature of DPPC, the rate decreased with increasing concentration of DPPC, while above the phase transition temperature the rate increased with increasing concentration of DPPC. It is concluded that below the phase transition temperature, there is an accumulation of surfactant–cobalt(III) complex at the interior of the vesicle membrane through hydrophobic effects, and above the phase transition temperature the surfactant–cobalt(III) complex is released from the interior to the exterior surface of the vesicle. In the presence of ionic liquid medium the second order rate constant for this electron transfer reaction for the same complex was found to increase with increasing concentration of ILs has also been studied. An outer-sphere mechanism is proposed for all these reactions and the results have been explained based on the hydrophobicity of the ligand and the reactants with opposite charges.  相似文献   
6.
A new resveratrol dimer and a new C-glucosyl resveratrol were isolated from stem wood of Hopea utilis along with nine stilbenoid derivatives comprising bergenin and (+)-lyoniresinol. The structures have been elucidated on the basis of the spectroscopic evidence.  相似文献   
7.
The authors describe an electrochemical method for the determination of the anti-cancer drug nilutamide. The method is based on the use of a composite prepared from β-cyclodextrin, gold nanoparticles and graphene oxide (β-CD-AuNP/GO). An alkaline solution of glucose was used as a reducing agent to reduce the gold ions, rather than citric acid and a harmful reducing agent such as hydrazine and sodium borohydride. The structure and surface morphology of the β-CD-AuNP/GO composite was characterized by Raman spectroscopy, transmission electron microscopy and energy-dispersive X-ray spectroscopy. A screen printed carbon electrode was modified with the nanocomposite, and the resulting electrode used as a disposable sensor for the determination of nilutamide by differential pulse voltammetry. Best operated at a working voltage of 0.43 V (vs Ag/AgCl), it exhibits excellent electrocatalytic activity and a detection limit as low as 0.4 nM. The sensor was applied to the determination of nilutamide in (spiked) human serum, as well as in a tablet, where it displays good recovery and accuracy. The sensor is repeatable, reproducible, stable and selective even in the presence of other aromatic nitro compounds.
Graphical abstract An electrochemical method for the determination of the anti-cancer drug nilutamide is described. A screen printed carbon electrode is modified with the nanocomposite prepared from β-cyclodextrin, gold nanoparticles and graphene oxide (β-CD-AuNP/GO). Best operated at a working voltage of 0.43 V (vs Ag/AgCl), it exhibits excellent electrocatalytic activity and a detection limit as low as 0.4 nM. The sensor was applied to the determination of nilutamide in (spiked) human serum and a tablet where it displays good recovery and accuracy.
  相似文献   
8.
The reaction of p-phenylenediamine with excess PCl 3 in the presence of pyridine affords p-C 6H 4[N(PCl 2) 2] 2 ( 1) in good yield. Fluorination of 1 with SbF 3 produces p-C 6H 4[N(PF 2) 2] 2 ( 2). The aminotetra(phosphonites) p-C 6H 4[N{P(OC 6H 4OMe- o) 2} 2] 2 ( 3) and p-C 6H 4[N{P(OMe) 2} 2] 2 ( 4) have been prepared by reacting 1 with appropriate amount of 2-(methoxy)phenol or methanol, respectively, in the presence of triethylamine. The reactions of 3 and 4 with H 2O 2, elemental sulfur, or selenium afforded the tetrachalcogenides, p-C 6H 4[N{P(O)(OC 6H 4OMe- o) 2} 2] 2 ( 5), p-C 6H 4[N{P(S)(OMe) 2} 2] 2 ( 6), and p-C 6H 4[N{P(Se)(OMe) 2} 2] 2 ( 7) in good yield. Reactions of 3 with [M(COD)Cl 2] (M = Pd or Pt) (COD = cycloocta-1,5-diene) resulted in the formation of the chelate complexes, [M 2Cl 4- p-C 6H 4{N{P(OC 6H 4OMe- o) 2} 2} 2] ( 8, M = Pd and 9, M = Pt). The reactions of 3 with 4 equiv of CuX (X = Br and I) produce the tetranuclear complexes, [Cu 4(mu 2-X) 4(NCCH 3) 4- p-C 6H 4{N(P(OC 6H 4OMe- o) 2) 2} 2] ( 10, X = Br; 11, X = I). The molecular structures of 1- 3, 6, 7, and 9- 11 are confirmed by single-crystal X-ray diffraction studies. The weak intermolecular P...P interactions observed in 1 leads to the formation of a 2D sheetlike structure, which is also examined by DFT calculations. The catalytic activity of the Pd(II) 8 has been investigated in Suzuki-Miyaura cross-coupling reactions.  相似文献   
9.
The RhI, RuII, PdI and NiII complexes of the aminobis(phosphonite), PhN(P(OC6H4OMe-o)2)2 (1) are reported. The reactions of 1 with [Rh(COD)Cl]2 in 1:1 and 2:1 molar ratio afford the mono- and diolefin substituted chloro bridged chelate complexes, [(COD)Rh22-Cl)2{PhN(P(OC6H4OMe-o)2)2}] (2) and [Rh(μ2-Cl){PhN(P(OC6H4OMe-o)2)2}]2 (3), respectively. Similarly, the cationic mono- and bis-chelate complexes, [Rh(COD){PhN(P(OC6H4OMe-o)2)2}]OTf (4) and [Rh{PhN(P(OC6H4OMe-o)2)2}2]OTf (5) are obtained by treating 1 with [Rh(COD)Cl]2 in the presence of AgOTf in appropriate ratios. The dinuclear RhI carbonyl complex, [RhCl(CO){μ-PhN(P(OC6H4OMe-o)2)2}]2 (6) is prepared by treating 1 with 0.5 equiv. of [Rh(CO)2Cl]2. Reaction of 1 with cis-[NiBr2(DME)] (DME = 1,2-dimethoxyethane) affords [{PhN(P(OC6H4OMe-o)2)2}NiBr2] (7) whereas with [Ru-(η6-p-cymene)Cl2]2 in refluxing THF medium produces an interesting and rare bimetallic RuII complex, [(η6-p-cymene)Ru(μ2-Cl)3Ru{PhN(P(OC6H4OMe-o)2)2}Cl] (8). Redox condensation of the Pd0 and PdII derivatives with 1 affords the dinuclear PdI complex, [PdBr{μ-PhN(P(OC6H4OMe-o)2)2}]2 (9). The formation and structure of complexes 2-9 are assigned through various spectroscopic and micro analysis data. The molecular structures of 5 and 7-9 are confirmed by single crystal X-ray diffraction studies.  相似文献   
10.
The oxidation of water catalyzed by [Ru(tpy)(bpy)(OH(2))](ClO(4))(2) (1; tpy = 2,2';6',2'-terpyridine; bpy = 2,2'-bipyridine) is evaluated in different acidic media at variable oxidant concentrations. The observed rate of dioxygen evolution catalyzed by 1 is found to be highly dependent on pH and the identity of the acid; e.g., d[O(2)]/dt is progressively faster in H(2)SO(4), CF(3)SO(3)H (HOTf), HClO(4), and HNO(3), respectively. This trend does not track with thermodynamic driving force of the electron-transfer reactions between the terminal oxidant, (NH(4))(2)[Ce(NO(3))(6)] (CAN), and Ru catalyst in each of the acids. The particularly high reactivity in HNO(3) is attributed to the NO(3)(-) anion: (i) enabling relatively fast electron-transfer steps; (ii) participating in a base-assisted concerted atom-proton transfer process that circumvents the formation of high energy intermediates during the O-O bond formation process; and (iii) accelerating the liberation of dioxygen from the catalyst. Consequently, the position of the rate-determining step within the catalytic cycle can be affected by the acid medium. These factors collectively contribute to the position of the rate-determining step within the catalytic cycle being affected by the acid medium. This offering also outlines how other experimental issues (e.g., spontaneous decay of the Ce(IV) species in acidic media; CAN/catalyst molar ratio; types of catalytic probes) can affect the Ce(IV)-driven oxidation of water catalyzed by homogeneous molecular complexes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号