首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
无限元方法及其应用   总被引:4,自引:0,他引:4  
限元是几何上趋于无穷的单元,它是一种特殊的有限元,也是对有限元在求解无界域 问题上的有效补充, 并可实现与有限元间的无缝连接.无限元分为映射无限元和非映射 无限元:映射无限元需要引入几何映射,在局部坐标系中构造插值形状函数,如Bettess 元和Astley元;非映射无限元则直接在整体坐标系中构造插值形状函数,如Burnett元. 本文评述求解无界域问题的无限元方法的研究现状和最新发展.首先介绍无限单元的概念 和无限元方法的特点;围绕求解以Helmholtz方程控制的波动问题,评述几种常规无限单 元的优劣,这些单元包括Bettess元、Astley元和Burnett元.然后介绍新近提出的广义 无限元方法,以及与常规无限元方法的区别与联系.最后对无限元方法在各种问题中的 应用做了总结.  相似文献   

2.
A finite and infinite element model is derived to predict wave patterns around a semi-infinite breakwater in water of constant depth. Both circular and square meshes of elements are used. The wave theory used is that of Berkhoff. The appropriate boundary conditions for finite and infinite boundaries are described. The singularity in the velocity at the breakwater tip is modelled effectively using the technique of Henshell and Shaw originally developed in elasticity. The results agree well with the analytical solution. In addition the problem of waves incident upon a semi-infinite breakwater and parabolic shoal, where both diffraction and refraction are present, is solved. There is no analytical solution for this case. The combination of finite and infinite elements is found to be an effective and accurate technique for such problems.  相似文献   

3.
A novel ellipsoidal acoustic infinite element is proposed. It is based a new pressure representation, which can describe and solve the eUipsoidal acoustic field more exactly. The shape functions of this novel acoustic infinite element are similar .to the Burnett‘s method, while the weight functions are defined as the product of the complex conjugates of the shaped functions and an additional weighting factor. The code of this method is cheap to generate as for 1-D element because only 1-D integral needs to be numerical. Coupling with the standard finite element, this method provides a capability for very efficiently modeling acoustic fields surrounding structures of virtually any practical shape. This novel method was deduced in brief and the conclusion was kept in detail. To test the feasibility of this novel method efficiently, in the examples the infinite elements were considered, excluding the finite elements relative. This novel eUipsoidal acoustic infinite element can deduce the analytic solution of an oscillating sphere. The example of a prolate spheroid shows that the novel infinite element is superior to the boundary element and other acoustic infinite elements. Analytical and numerical results of these examples show that this novel method is feasible.  相似文献   

4.
IntroductionManyinfiniteproblemscanbefoundincivilengineering ,suchastunnelconstruction ,structurefoundation ,etc ..Forotherengineeringproblems,whenthephysicaldimensionsofanobjectaresmallandthesurroundingmediaorstructuresaremuchbiggerthantheobject,thenumericalcalculatingmodelcanbetreatedasoneinaninfinitefield .Sofar,onlyafewanalyticalsolutionsforinfinitefieldproblemscanbefound[1- 3].ManyprojectsrelatedtoinfinitefieldproblemsaresolvedbytheFEM ,whereinfiniteelementmethodsareused[4 ,5 ].Sometime…  相似文献   

5.
This paper is concerned with the stress intensity factors (SIFs) of cracks emanating from an elliptical hole in an infinite or a finite plate under biaxial loads by using a boundary element method, which consists of the non-singular displacement discontinuity element presented by Crouch and Starfield and the crack-tip displacement discontinuity elements due to the author. In the boundary element implementation the left or the right crack-tip element is placed locally at the corresponding left or right crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundaries. A few numerical examples are included to show that the present approach is very efficient and accurate for the calculating the SIFs of crack problems in an infinite or a finite plate. The present numerical results of cracks emanating from an elliptical hole under biaxial loads can reveal the effect of the elliptical aspect ratio and the transverse load on the SIFs.  相似文献   

6.
Hybrid equilibrium finite elements based on the direct approximation of the domain stress and boundary displacement fields are presented. The structure is divided into a far field, which is considered as an infinite super element, and a near field, which is in turn discretized into finite elements. The displacements in the domains of typical finite elements are obtained from the assumed domain stress field by using the dynamic equilibrium equations. The Helmholtz equation is satisfied in the domain of the infinite super element, and the domain stress fields are associated with elastic and compatible displacements. The resulting governing system is symmetric, sparse, and, if well done, positive. Numerical applications are presented to illustrate the performance of the formulation  相似文献   

7.
Finite element models are presented for the calculation of near and far field acoustical radiation. These models are applied to the specific problem of fan noise radiation from axisymmetric turbofan inlets. In all cases conventional acoustic finite elements are used within an inner region close to the inlet. The far field is represented by infinite elements or wave envelope elements. Theory and results are presented for the case with zero mean flow. Comparisons of computed data with analytic solutions and measured values establish the utility of both the infinite element and wave envelope element schemes in determining the near field values of acoustical pressure. The wave envelope scheme is shown to be effective also in the far field. Both schemes use meshes an order of magnitude more sparse that would be required in conventional numerical discretizations, and may consequently be applied at modest computational cost.  相似文献   

8.
The size of representative volume element (RVE) for 3D stochastic fibrous media is investigated. A statistical RVE size determination method is applied to a specific model of random microstructure: Poisson fibers. The definition of RVE size is related to the concept of integral range. What happens in microstructures exhibiting an infinite integral range? Computational homogenization for thermal and elastic properties is performed through finite elements, over hundreds of realizations of the stochastic microstructural model, using uniform and mixed boundary conditions. The generated data undergoes statistical treatment, from which gigantic RVE sizes emerge. The method used for determining RVE sizes was found to be operational, even for pathological media, i.e., with infinite integral range, interconnected percolating porous phase and infinite contrast of properties.  相似文献   

9.
截锥型薄壁结构声振耦合动力特性分析   总被引:1,自引:0,他引:1  
采用大型通用软件ANSYS,建立截锥型薄壁结构的实体有限元动力学模型,通过与相关实验数据的对比验证了模型合理性。据此,利用无限元模拟自由声场边界,建立声场-截锥型薄壁结构的直接耦合有限元动力学模型。通过数值仿真分析研究了声场中截锥壳结构的振动特性,并讨论了声振动对结构动力特性的影响。研究结果表明:数值仿真结果和截锥壳声振实验数据比较一致。在考虑声场影响后发现:结构位移共振频率值大多有所降低,结构位移共振频率数量显著增多;在低频下,结构位移响应峰值在声场的影响下明显增大;在高频下则明显减小。  相似文献   

10.
Ordinary differential equations (ODEs) with fractional order derivatives are infinite dimensional systems and nonlocal in time: the history of the state variable is needed to calculate the instantaneous rate of change. This nonlocal nature leads to expensive long-time computations (O(t 2) computations for solution up to time t). A finite dimensional approximation of the fractional order derivative can alleviate this problem. We present one such approximation using a Galerkin projection. The original infinite dimensional system is replaced with an equivalent infinite dimensional system involving a partial differential equation (PDE). The Galerkin projection reduces the PDE to a finite system of ODEs. These ODEs can be solved cheaply (O(t) computations). The shape functions used for the Galerkin projection are important, and given attention. The approximation obtained is specific to the fractional order of the derivative; but can be used in any system with a derivative of that order. Calculations with both global shape functions as well as finite elements are presented. The discretization strategy is improved in a few steps until, finally, very good performance is obtained over a user-specifiable frequency range (not including zero). In particular, numerical examples are presented showing good performance for frequencies varying over more than 7 orders of magnitude. For any discretization held fixed, however, errors will be significant at sufficiently low or high frequencies. We discuss why such asymptotics may not significantly impact the engineering utility of the method.  相似文献   

11.
Axisymmetric longitudinal wave propagation in a finite prestrained circular cylinder contained in a finite prestrained infinite body is investigated within the scope of the piecewise-homogeneous body model by employing the three-dimensional linearized theory of elastic waves in a prestressed body. It is assumed that the materials of the cylinder and infinite body are compressible and that their elastic relations are described by a harmonic potential. Numerical results are presented and discussed for the case where the elastic constants of the cylinder are greater than those of the surrounding infinite body  相似文献   

12.
A simple and effective boundary element method for stress intensity factor calculation for crack problems in a plane elastic plate is presented. The boundary element method consists of the constant displacement discontinuity element presented by Crouch and Starfield and the crack-tip displacement discontinuity elements proposed by YAN Xiangqiao. In the boundary element implementation the left or the right crack-tip displacement discontinuity element was placed locally at the corresponding left or right each crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundaries. Test examples (i. e. , a center crack in an infinite plate under tension, a circular hole and a crack in an infinite plate under tension) are included to illustrate that the numerical approach is very simple and accurate for stress intensity factor calculation of plane elasticity crack problems. In addition, specifically, the stress intensity factors of branching cracks emanating from a square hole in a rectangular plate under biaxial loads were analysed. These numerical results indicate the present numerical approach is very effective for calculating stress intensity factors of complex cracks in a 2-D finite body, and are used to reveal the effect of the biaxial loads and the cracked body geometry on stress intensity factors.  相似文献   

13.
动态断裂力学的无限相似边界元法   总被引:6,自引:1,他引:6  
对弹性动力学的相似边界元法进行了进一步研究,推导了相应的计算公式,并在此基础上提出了动态断裂力学的无限相似边界元法.与传统的边界元法相比,相似边界元法由于只需在少数单元上进行数值积分,大大减少了计算量.对动态断裂力学问题,无限相似边界元法由于在裂纹尖端的边界上设置了逼近于裂纹尖端的无限个相似边界单元,可直接得到裂纹尖端具有奇异性的应力,而不需要设置奇异单元,从而突破了奇异单元对应力奇异性阶次的局限.另外,还讨论了无限相似边界元法得到的无限阶的线性代数方程组的求解方法.  相似文献   

14.
A numerical algorithm to determine the impingement of an axisymmetric free jet upon a curved deflector is presented. The problem is considered within the potential flow theory with the allowance of gravity and surface tension effects. The primary dependent variable is the Stokes streamfunction, which is approximated through finite elements using the isoparametric Hermite Zienkiewicz element. To find the correct position of the free boundaries, a trial-and-error method is employed which amounts to solving a boundary value problem (BVP) for the Stokes streamfunction at each iteration step. An efficient method is proposed to solve this BVP. The algorithm to find the correct position of the free boundaries is tested by computing the impingement upon an infinite disc and a hemispherical deflector. To confirm the correctness of the solution, each problem has been solved using several different mesh gradings. A comparison between the Zienkiewicz and the other standard C0 finite elements is also given.  相似文献   

15.
提出了一种将有限元和差分线法相结合求解无穷域势流问题的算法。用两同心圆将求解域划分为存在重叠的有限和无限两个区域,在有限和无限域上分别用有限元和差分线法求解Laplace方程边值问题。用差分线法推导出的关系式修正有限元方程,求解该方程组从而得到原问题的解。本算法将求解无穷域问题转化为代数特征值问题和有限域内线性方程组的...  相似文献   

16.
模拟裂纹扩展的一种有限元局部动态子划分方法   总被引:1,自引:0,他引:1  
提出了一种有限元子划分结合子结构的方法来模拟裂纹扩展问题。提出的方法中,将单元分为三类:被裂纹贯穿的单元,包含裂尖的单元和常规单元。对前两类单元进行子划分,每个单元的归类随裂纹的扩展而动态变化。覆盖一条裂纹的前两类单元子划分后构成一个子结构,子结构也是动态的,跟随裂纹的扩展而逐步扩大。本文的方法可以使裂纹沿任意路径扩展而不受初始网格的限制,裂纹扩展后无需对结构整体的网格重划分,结构整体分析的总自由度也不变。用该方法计算无限大平面中心裂纹的应力强度因子,模拟三点弯梁跨中裂纹的扩展,验证了计算精度,并进一步用该方法模拟了非均质材料中裂纹的扩展,考核了对复杂裂纹扩展问题的适用性。  相似文献   

17.
18.
Taking Hall and ion‐slip current into account, the unsteady magnetohydrodynamic heat‐generating free convective flow of a partially ionized gas past an infinite vertical plate in a rotating frame of reference is investigated theoretically. A computer program using finite elements is employed to solve the coupled non‐linear differential equations for velocity and temperature fields. The effects of Hall and ion‐slip currents as well as the other parameters entering into the problem are discussed extensively and shown graphically. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
镇斌  拜寅康 《力学季刊》2021,42(1):80-86
本文研究了梁跨长对移动荷载下梁稳态响应的影响.在以往的研究中,通常采用Galerkin方法或者有限元方法计算不同长度的梁的动力响应.当梁长的增加不再明显改变梁的动力响应时,可认为梁此时的长度可以代替无穷长时的情况.采用上述方法的研究表明,当梁长大于10 m时,就可以用有限长梁近似无限长梁的响应.本文通过求解有限长梁和无...  相似文献   

20.
A special crack tip displacement discontinuity element   总被引:3,自引:0,他引:3  
Based on the analytical solution to the problem of a constant discontinuity in displacement over a finite line segment in the x, y plane of an infinite elastic solid and the note of the crack tip element by Crouch, in the present paper, the special crack tip displacement discontinuity element is developed. Further the analytical formulas for the stress intensity factors of crack problems in general plane elasticity are given. In the boundary element implementation the special crack tip displacement discontinuity element is placed locally at each crack tip on top of the non-singular constant displacement discontinuity elements that cover the entire crack surface. Numerical results show that the displacement discontinuity modeling technique of a crack presented in this paper is very effective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号