首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider the Galerkin finite element method for the incompressible Navier–Stokes equations in two dimensions. The domain is discretized into a set of regular triangular elements and the finite‐dimensional spaces employed consist of piecewise continuous linear interpolants enriched with the residual‐free bubble functions. To find the bubble part of the solution, a two‐level finite element method with a stabilizing subgrid of a single node is described, and its application to the Navier–Stokes equation is displayed. Numerical approximations employing the proposed algorithm are presented for three benchmark problems. The results show that the proper choice of the subgrid node is crucial in obtaining stable and accurate numerical approximations consistent with the physical configuration of the problem at a cheap computational cost. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
A detailed case study is made of one particular solution of the 2D incompressible Navier–Stokes equations. Careful mesh refinement studies were made using four different methods (and computer codes): (1) a high-order finite-element method solving the unsteady equations by time-marching; (2) a high-order finite-element method solving both the steady equations and the associated linear-stability problem; (3) a second-order finite difference method solving the unsteady equations in streamfunction form by time-marching; and (4) a spectral-element method solving the unsteady equations by time-marching. The unanimous conclusion is that the correct solution for flow over the backward-facing step at Re = 800 is steady—and it is stable, to both small and large perturbations.  相似文献   

3.
A nested non-linear multigrid algorithm is developed to solve the Navier–Stokes equations which describe the steady incompressible flow past a sphere. The vorticity–streamfunction formulation of the Navier–Stokes equations is chosen. The continuous operators are discretized by an upwind finite difference scheme. Several algorithms are tested as smoothing steps. The multigrid method itself provides only a first-order-accurate solution. To obtain at least second-order accuracy, a defect correction iteration is used as outer iteration. Results are reported for Re = 50, 100, 400 and 1000.  相似文献   

4.
A finite element method for solution of the stream function formulation of Stokes flow is developed. The method involves complete cubic non-conforming (C0) triangular Hermite elements. This element fails the patch test. To correct the element and produce a convergent method we employ a penalty method to weakly enforce the desired continuity constraint on the normal derivative across the inter-element boundaries. Successful use of the method is demonstrated to require reduced integration of the inter-element penalty with a 1-point Gauss rule. Error estimates relate the optimal choice of penalty parameter to mesh size and are corroborated by numerical convergence studies. The need for reduced integration is interpreted using rank relations for an associated hybrid method.  相似文献   

5.
A Chebyshev collocation method for solving the unsteady two-dimensional Navier–Stokes equations in vorticity–streamfunction variables is presented and discussed. The discretization in time is obtained through a class of semi-implicit finite difference schemes. Thus at each time cycle the problem reduces to a Stokes-type problem which is solved by means of the influence matrix technique leading to the solution of Helmholtz-type equations with Dirichlet boundary conditions. Theoretical results on the stability of the method are given. Then a matrix diagonalization procedure for solving the algebraic system resulting from the Chebyshev collocation approximation of the Helmholtz equation is developed and its accuracy is tested. Numerical results are given for the Stokes and the Navier–Stokes equations. Finally the method is applied to a double-diffusive convection problem concerning the stability of a fluid stratified by salinity and heated from below.  相似文献   

6.
Conventional least‐squares finite element methods (LSFEMs) for incompressible flows conserve mass only approximately. For some problems, mass loss levels are large and result in unphysical solutions. In this paper we formulate a new, locally conservative LSFEM for the Stokes equations wherein a discrete velocity field is computed that is point‐wise divergence free on each element. The central idea is to allow discontinuous velocity approximations and then to define the velocity field on each element using a local stream‐function. The effect of the new LSFEM approach on improved local and global mass conservation is compared with a conventional LSFEM for the Stokes equations employing standard C0 Lagrangian elements. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Finite elements using higher-order basis functions in the spirit of the QUICK method for convection-dominated fluid flow and transport problems are introduced and demonstrated. Instead of introducing new internal degrees of freedom, completeness is achieved by including functions based on nodal values exterior and upwind to the element domain. Applied with linear test functions to the weak statements for convection-dominated problems, a family of Petrov–Galerkin finite elements is developed. Quadratic and cubic versions are demonstrated for the one-dimensional convection–diffusion test problem. Elements of up to seventh degree are used for local solution refinement. The behaviour of these elements for one-dimensional linear and non-linear advection is investigated. A two-dimensional quadratic upwind element is demonstrated in a streamfunction–vorticity formulation of the Navier–Stokes equations for a driven cavity flow test problem. With some minor reservations, these elements are recommended for further study and application.  相似文献   

8.
The purpose of the present study is to establish a numerical model appropriate for solving inviscid/viscous free‐surface flows related to nonlinear water wave propagation. The viscous model presented herein is based on the Navier–Stokes equations, and the free‐surface is calculated through an arbitrary Lagrangian–Eulerian streamfunction‐vorticity formulation. The streamfunction field is governed by the Poisson equation, and the vorticity is obtained on the basis of the vorticity transport equation. For computing the inviscid flow the Laplace streamfunction equation is used. These equations together with the respective (appropriate) fully nonlinear free‐surface boundary conditions are solved using a finite difference method. To demonstrate the model feasibility, in the present study we first simulate collision processes of two solitary waves of different amplitudes, and compute the phenomenon of overtaking of such solitary waves. The developed model is subsequently applied to calculate (both inviscid and the viscous) flow field, as induced by passing of a solitary wave over submerged rectangular structures and rigid ripple beds. Our study provides a reasonably good understanding of the behavior of (inviscid/viscous) free‐surface flows, within the framework of streamfunction‐vorticity formulation. The successful simulation of the above‐mentioned test cases seems to suggest that the arbitrary Lagrangian–Eulerian/streamfunction‐vorticity formulation is a potentially powerful approach, capable of effectively solving the fully nonlinear inviscid/viscous free‐surface flow interactions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
A new iterative algorithm for the solution of the three-dimensional Navier–Stokes equations by the finite element method is presented. This algorithm is based on a combination of the Uzawa and the Arrow–Hurwicz algorithms and uses a preconditioning technique to enhance convergence. Numerical tests are presented for the cubic cavity problem with two elements, namely the linear brick Q1?P0 and the enriched linear brick Q1+ ? P1. It is shown that the proposed methodology is optimal with the enriched element and that the CPU time varies as NEQ1·44, where NEQ is the number of equations.  相似文献   

10.
The impingement of an axisymmetric underexpanded ideal gas jet on a flat surface is investigated through numerical simulations. Different injection conditions, characterized by the nozzle pressure ratio (NPR), have been considered and for each, several standoff distances were studied. The study was conducted using the commercial finite volume general purpose code Fluent®. The numerical results are presented in terms of Mach number and static pressure to characterize the structure of the flow. Furthermore, the influence of the standoff distance upon the position and diameter of Mach disk is analysed. Some results are compared with literature data and good agreement is obtained.  相似文献   

11.
An attempt is made to find out the suitable entrainment and exit boundary conditions in laminar flow situations. Streamfunction vorticity formulation of the Navier–Stokes equations are solved by ADI method. Two‐dimensional laminar plane wall jet flow is used to test different forms of the boundary conditions. Results are compared with the experimental and similarity solution and the proper boundary condition is suggested. The Kind 1 boundary condition is recommended. It consists of zero first derivative condition for velocity variable and for streamfunction equation, mixed derivative at the entrainment and exit boundaries. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
A two-level stabilized finite element method for the Stokes eigenvalue problem based on the local Gauss integration is considered.This method involves solving a Stokes eigenvalue problem on a coarse mesh with mesh size H and a Stokes problem on a fine mesh with mesh size h = O(H 2),which can still maintain the asymptotically optimal accuracy.It provides an approximate solution with the convergence rate of the same order as the usual stabilized finite element solution,which involves solving a Stokes eigenvalue problem on a fine mesh with mesh size h.Hence,the two-level stabilized finite element method can save a large amount of computational time.Moreover,numerical tests confirm the theoretical results of the present method.  相似文献   

13.
We consider the 3-D evolutionary Navier–Stokes equations with a Navier slip-type boundary condition, see (1.2), and study the problem of the strong convergence of the solutions, as the viscosity goes to zero, to the solution of the Euler equations under the zero-flux boundary condition. We prove here, in the flat boundary case, convergence in Sobolev spaces W kp (Ω), for arbitrarily large k and p (for previous results see Xiao and Xin in Comm Pure Appl Math 60:1027–1055, 2007 and Beir?o da Veiga and Crispo in J Math Fluid Mech, 2009, doi:). However this problem is still open for non-flat, arbitrarily smooth, boundaries. The main obstacle consists in some boundary integrals, which vanish on flat portions of the boundary. However, if we drop the convective terms (Stokes problem), the inviscid, strong limit result holds, as shown below. The cause of this different behavior is quite subtle. As a by-product, we set up a very elementary approach to the regularity theory, in L p -spaces, for solutions to the Navier–Stokes equations under slip type boundary conditions.  相似文献   

14.
A new stabilized finite element method for the Stokes problem is presented. The method is obtained by modification of the mixed variational equation by using local L2 polynomial pressure projections. Our stabilization approach is motivated by the inherent inconsistency of equal‐order approximations for the Stokes equations, which leads to an unstable mixed finite element method. Application of pressure projections in conjunction with minimization of the pressure–velocity mismatch eliminates this inconsistency and leads to a stable variational formulation. Unlike other stabilization methods, the present approach does not require specification of a stabilization parameter or calculation of higher‐order derivatives, and always leads to a symmetric linear system. The new method can be implemented at the element level and for affine families of finite elements on simplicial grids it reduces to a simple modification of the weak continuity equation. Numerical results are presented for a variety of equal‐order continuous velocity and pressure elements in two and three dimensions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
We introduce a continuous data assimilation (downscaling) algorithm for the two-dimensional Navier–Stokes equations employing coarse mesh measurements of only one component of the velocity field. This algorithm can be implemented with a variety of finitely many observables: low Fourier modes, nodal values, finite volume averages, or finite elements. We provide conditions on the spatial resolution of the observed data, under the assumption that the observed data is free of noise, which are sufficient to show that the solution of the algorithm approaches, at an exponential rate asymptotically in time, to the unique exact unknown reference solution, of the 2D Navier–Stokes equations, associated with the observed (finite dimensional projection of) velocity.  相似文献   

16.
An adaptive finite element approximation for an optimal control problem of the Stokes flow with an L2‐norm state constraint is proposed. To produce good adaptive meshes, the a posteriori error estimates are discussed. The equivalent residual‐type a posteriori error estimators of the H 1‐error of state and L2‐error of control are given, which are suitable to carry out the adaptive multi‐mesh finite element approximation. Some numerical experiments are performed to illustrate the efficiency of the a posteriori estimators. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
18.
In this paper, we develop least‐squares finite element methods (LSFEMs) for incompressible fluid flows with improved mass conservation. Specifically, we formulate a new locally conservative LSFEM for the velocity–vorticity–pressure Stokes system, which uses a piecewise divergence‐free basis for the velocity and standard C0 elements for the vorticity and the pressure. The new method, which we term dV‐VP improves upon our previous discontinuous stream‐function formulation in several ways. The use of a velocity basis, instead of a stream function, simplifies the imposition and implementation of the velocity boundary condition, and eliminates second‐order terms from the least‐squares functional. Moreover, the size of the resulting discrete problem is reduced because the piecewise solenoidal velocity element is approximately one‐half of the dimension of a stream‐function element of equal accuracy. In two dimensions, the discontinuous stream‐function LSFEM [1] motivates modification of our functional, which further improves the conservation of mass. We briefly discuss the extension of this modification to three dimensions. Computational studies demonstrate that the new formulation achieves optimal convergence rates and yields high conservation of mass. We also propose a simple diagonal preconditioner for the dV‐VP formulation, which significantly reduces the condition number of the LSFEM problem. Published 2012. This article is a US Government work and is in the public domain in the USA.  相似文献   

19.
For the planar and spatial N-body problems, it has been proved by Marchal and Chenciner that solutions for the minimizing problem with fixed ends are free from interior collisions. This important result has been extended by Ferrario & Terracini to Newtonian-type problems and equivariant problems. It has also been used to construct many symmetric solutions for the N-body problem. In this paper we are interested in action minimizing solutions in function spaces with free boundaries. The function spaces are imposed with boundary conditions, such that every mass point starts and ends on two transversal proper subspaces of ℝd, d≥2. We will prove that solutions for this minimizing problem with free boundaries are always free from collisions, including boundary collisions. This result can be used to construct certain classes of relative periodic solutions of the N-body problem.  相似文献   

20.
This paper studies the boundary value problem for a finite plate containing two dissimilar inclusions. The matrix and the two inclusions have different elastic properties. The loadings applied along the outer boundary are in equilibrium. The mentioned problem is decomposed into three boundary value problems (BVPs). Two of them are interior BVP for the elastic inclusions, while the other is a BVP for the triply-connected region. Three problems are connected together through the common displacements and tractions along the interface boundaries. Explicit form for the complex variable boundary integral equation (CVBIE) is derived. After discretization of relevant BIEs, the solutions are evaluated numerically. Three numerical examples for different elastic constant combinations are provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号