首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  国内免费   60篇
化学   66篇
力学   2篇
数学   1篇
物理学   2篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   2篇
  2018年   5篇
  2017年   3篇
  2016年   5篇
  2015年   6篇
  2014年   5篇
  2013年   3篇
  2012年   1篇
  2010年   6篇
  2009年   5篇
  2008年   4篇
  2007年   7篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2000年   3篇
  1987年   1篇
  1982年   1篇
排序方式: 共有71条查询结果,搜索用时 51 毫秒
1.
天然气作为一种低碳清洁能源,其储量大、价格低、热值高,被认为是最有前途的石油替代资源之一.甲烷是天然气的主要成分,直接转化为甲醇是有效利用甲烷的一种途径,也是一个极具挑战性的课题.一方面,甲烷的C-H键(439.3 kJ·mol-1)强度非常高,活化十分困难;另一方面,在反应条件下,甲醇等产物比甲烷更容易被氧化,从而导致目标产物的选择性不高.因此,设计高效催化剂是解决该难题的有效途径之一.研究(J. Catal., 1993, 144.238-253和Catal. Today, 2021, 365,71-79)发现,硫酸化的氧化锆(SZ)负载的贵金属(例如Pt等)等超强酸催化剂能够促进甲烷在脱氢芳构化反应中的活化.受该工作启发,本文通过模拟均相催化设计了固体超强酸负载的Ru单原子催化剂(SAC),并在温和条件(70 ℃)下将其用于甲烷直接转化制甲醇反应.结果发现,在Ru/SZSAC上的含氧化合物(CH3OH, CH3OOH和HCOOH)收率(18.32 μmol,≥80 h-1)显著超过SZ(0.6...  相似文献   
2.
在众多生物基化合物中,2,5-二甲基呋喃(DMF)是一种有实用前景的可再生液体生物质燃料,也是一种具有重要价值的化学品,可作为生产对苯二甲酸的原料.2,5-二甲基四氢呋喃(DMTF)是DMF进一步加氢产物,该化合物比DMF更稳定,适合长期保存;由于具有更高的氢碳比,用作生物燃料燃烧时能够释放更多能量.研究生物质资源制备DMF和DMTF对可再生资源制备液体燃料和化学品具有重要意义.从生物质多糖出发制备这两类化合物,中间经历了水解、脱水、加氢、加氢脱氧等多个反应步骤,每一步反应都十分复杂,包含许多副反应途径.此外,由于每一步反应条件的不兼容性,大多数研究集中在分步反应阶段,鲜有文献能够实现从碳水化合物原料直接转化为DMF和DMTF.发展由生物质一锅法多步耦合转化技术制备化学品和燃料,不仅具有科学意义,而且可大大简化反应过程,避免中间产物分离和损失,节省资源和时间,历来受到化学家和工业界的关注.本文利用离子液体对Ru/C催化剂电子性质的修饰作用以及溶剂效应的影响,设计了离子液体/THF双相体系中果糖直接催化转化制备2,5-二甲基呋喃(DMF)和2,5-二甲基四氢呋喃(DMTF)的新路线.该转化过程耦合了果糖脱水制HMF、HMF加氢及加氢脱氧生成DMF和DMTF等多步反应.通常在HMF加氢转化过程中, Ru/C催化剂的高活性易导致HMF深度加氢生成大量开环产物及气体,我们借助离子液体与有机溶剂的不同溶解性,筛选出[BMIm]Cl/THF双相溶剂体系,使极性HMF在离子液体层反应,生成弱极性的DMF和DMTF能及时被THF萃取出来,有效稳定了目标产物.其次,果糖转化为HMF会产生少量水,通常水的存在易导致HMF发生水合等副反应,对下一步的加氢转化是不利因素;然而在本催化体系中,由于[BMIm]Cl能与水以较强的氢键结合形成水合物,对水分子起到了束缚作用,减少了HMF发生水解、水合等副反应的机会.另一方面,离子液体粘度较大,微量水的存在能降低离子液体层粘度,改善传质,从而提高反应速率.在HMF加氢处理过程中,离子液体对DMF和DMTF的生成起了决定作用.当反应体系中不添加离子液体,以THF为溶剂,反应结束后未检测到DMF生成, DMTF的收率仅为2%,但HMF已经完全转化.取气体样品进行GC分析,发现有部分气相产物生成,包括CO2、CH4和C2H6等.液体混合物进行GC-MS检测,发现产物主要包括DHMTF、5-甲基四氢糠醇(MTFA)、四氢糠醇(TFA)、1,2-戊二醇、DMTF、2-己醇和少量戊醇,产物中所有呋喃环结构的双键都发生加氢反应.以上结果表明,没有离子液体的THF中, Ru/C催化的HMF涉氢反应平衡已发生改变.当反应体系中添加0.2 g离子液体[BMIm]Cl进行HMF的加氢时,此时开始有DMF生成,随着[BMIm]Cl量依次增加, DMF以及DMTF的收率也呈上升趋势.1.0 g离子液体获得两种产物最高收率为68%.然而,如果进一步增加[BMIm]Cl的量到2.0 g,呋喃基液体燃料DMF和DMTF的收率却开始下降.综合以上实验结果,我们认为适量的[BMIm]Cl存在有可能会对催化剂物理化学性质造成影响,从而对产物的选择性起了决定性作用.通过对催化剂进行元素分析、XPS、H2-TPR表征以及一系列对比实验证明,离子液体不仅促进果糖脱水转化为HMF,同时在HMF选择性加氢反应中可修饰活性金属电子性质,改变催化路径,是多步串联反应能够耦合的关键因素.在[BMIm]Cl/THF双相溶剂体系中,离子液体的“溶剂笼效应”促进DMF和DMTF高效生成, THF的萃取功能对目标产物的稳定起了关键作用.以上对催化剂和溶剂的合理设计共同促进高产率呋喃基燃料的获得.该研究实现由六碳糖直接选择转化获取DMF和DMTF,为生物质高效催化转化制备生物基能源化学品提供了新思路.  相似文献   
3.
生物质作为自然界唯一可再生的有机碳资源,其利用受到了越来越多的关注。特别是随着能源和环境危机的日益加重,将生物质中非可食用部分催化转化为燃料及具有高附加值的化学品被认为是高效、环保、原子经济的绿色过程。同时,多孔炭材料具有丰富的孔道结构、优异的水热稳定性和大比表面积,是生物质催化转化反应中最常用的载体材料之一。兼之炭材料表面极性、亲疏水性的可调变性,及对酸碱溶剂的反应惰性,也使其无论在学术研究还是在工业应用中都具有特殊的优势。另外,随着纳米炭材料科学的飞速发展,合成孔径、形貌、及表面官能团可控的介孔炭和具有多级孔道结构的多孔炭材料成为可能,将其应用到纤维素催化转化过程中,对深入理解孔道结构、表面官能团对纤维素转化的作用,揭示催化反应作用机制,指导炭基催化剂的设计合成,均具有重要意义。在本综述中,我们首先对纤维素转化中多孔炭的孔道结构和表面官能团性质的独特作用进行了阐述。由于商业活性炭的孔径一般在微孔尺度,但纤维素及可溶低聚糖的分子体积较大,因而其在活性炭中的传质受到了极大的限制。通过模板法获得的介孔炭材料,可实现孔径在2–10 nm的可控合成,大大提高了反应物的扩散速率,使之能与催化活性位有效接触。但孔道过于狭长,在反应过程中堵塞的可能性增高,进而导致催化剂失活;因此,在介孔孔道的基础上,建立互通的多级孔道结构对反应物、中间物、和产物的扩散,及催化活性的保持更为有利。另一方面,炭材料表面的含氧官能团不仅具有加强1,4-糖苷键吸附的作用,还可以作为酸性活性中心催化水解反应的进行;尤其是在传统的水相纤维素催化转化过程中,亲水表面对多孔炭催化剂与反应物的接触非常有利。本文以纤维素水解及纤维素水解加氢反应为例,展开讨论了多孔炭作为固体酸及双功能催化剂载体的应用。在水解反应中,纤维素首先在热水中降解为可溶低聚糖,之后再与活性炭表面官能团反应;其中多孔炭的比表面积、酸量、及酸强度均是促进水解发生的正向因素。在水解加氢反应中,炭载贵金属催化剂作为最常用的加氢催化剂,可获得以六元醇为主的纤维素转化产物。除了加氢作用之外,贵金属小颗粒被证实可以通过氢溢流作用提供水解所需的H+,同时,正价的贵金属也可促进反应过程中的氢转移。另一方面,由于钨物种可催化逆羟醛缩合反应的发生,因此在反应体系中引入钨物种时,水解加氢的主要产物由六元醇变为乙二醇。需要特别指出的是,在纤维素催化水解加氢的过程中,多孔炭材料作为载体同样具有非常重要的作用:一方面,三维介孔的孔道结构不仅有利于反应物、产物的扩散,也有利于加氢金属催化剂的分散,进而提高金属的催化加氢能力;另一方面,当炭材料的表面化学性质改变时,也会影响产物的选择性分布,例如当炭表面显碱性时,由于异构化作用,丙二醇成为主要产物。本文最后,我们列举了一些新型多孔炭材料,包括杂原子改性的多孔炭材料和金属氧化物-炭复合多孔材料的合成方法及其在纤维素催化转化乃至生物质转化中的潜在应用。  相似文献   
4.
大量乙烯中少量乙炔的去除是化工生产中的重要过程之一,理想途径是将其选择加氢生成乙烯.负载型Pd催化剂因具有很高的乙炔转化率而被广泛用于该过程,但乙烯选择性很低,同时会使原料气中的乙烯被加氢,造成原料气的浪费.采用其它元素对Pd纳米粒子表面修饰,覆盖部分活性位,可以在一定程度上提高乙烯选择性,但是会大大降低Pd的利用率.因此,制备兼具高活性和高选择性且经济实用的催化剂,仍是这一过程亟待解决的主要问题之一.我们的前期工作中,将Pd与IB族金属(Au,Ag,Cu)分别结合制备得到了一系列含Pd的合金单原子催化剂(SAC),发现它们在大量乙烯存在条件下的乙炔选择加氢反应中表现出优异的催化性能.其中,Pd的用量仅为ppm级别,大大提高了Pd的利用率.作为IB族最为廉价的金属,Pd与Cu形成的合金SAC在提高Pd原子利用率的同时,能够进一步降低催化剂的经济成本.然而,当形成合金SAC时,Cu/Pd原子比例的极限值仍然不确定.本文通过固定Pd的担载量,采用简单的等体积共浸渍的方法,制备了一系列不同Cu/Pd原子比例的氧化硅负载的双金属催化剂.首先,我们采用程序升温还原(TPR)和X射线衍射(XRD)对催化剂的还原能力和双金属纳米粒子的尺寸进行了考察.进一步,采用X射线吸收光谱(XAS,包括EXAFS和XANES)对双金属催化剂中Pd的配位环境进行了分析.最后,结合它们在大量乙烯存在条件下的乙炔选择加氢反应中的催化性能,对形成合金SAC时Cu/Pd原子比例进行了讨论.TPR结果显示,Cu与Pd结合时会促进双金属纳米粒子的还原.XRD结果表明,随着Cu含量的降低,双金属纳米粒子的尺寸明显减小.XANES结果证实,当Pd与Cu结合时,Pd会带有部分负电荷,这也与Pd的电负性大于Cu相一致.通过对EXAFS拟合结果进行分析,我们发现当Cu/Pd的原子比例≥40/1时,Pd原子可以被Cu原子完全分隔开,形成含Pd的合金SAC,使其在大量乙烯存在条件下的乙炔选择加氢反应中表现出优异的催化性能.通过对还原温度的考察,我们发现还原温度由250 oC升高到400 oC时,对同一催化剂的催化性能影响不大;EXAFS拟合结果显示,对比分别经过250和400 oC还原后的催化剂,Pd的配位环境变化不明显,这可能是导致催化性能相似的主要原因.  相似文献   
5.
王伟银  林露  齐海峰  曹文秀  李志  陈少华  邹晓轩  陈铁红  唐南方  宋卫余  王爱琴  罗文豪 《催化学报》2021,42(5):824-834,中插29-中插32
卤代苯胺是化学工业中重要的中间体,主要用于制造药物、聚合物、染料等含氮化学品,用多相金属催化剂催化卤代硝基芳烃加氢制备卤代苯胺是一种高效,绿色和可持续发展的生产工艺.该过程需要选择性加氢硝基基团,同时避免卤素基团的脱卤副反应发生.然而,化学选择性加氢存在巨大的挑战,难点在于催化剂的精准设计,一方面要求具备对硝基基团合适的加氢能力,另一方面要阻止对卤素基团的脱卤副反应发生.基于此,研制高效多相金属催化剂用于卤代硝基芳烃选择性加氢制备卤代苯胺反应引起了高度关注.近年来,单原子金属催化剂受到越来越多的关注,并在卤代硝基芳烃选择性加氢制备卤代苯胺反应中显现出极大的潜力.本文通过在金属有机骨架材料MIL-53(Al)自组装的过程中将金属Rh原位嫁接其骨架结构中,继而通过限域热解的方法制备了Rh@Al2O3@C单原子催化剂,其在间氯硝基苯(m-CNB)加氢制间氯苯胺(m-CAN)反应中显现了高效催化选择性.球差校正高角度环形暗场模式的透射电镜,CO作为探针分子的红外光谱和X射线光电子能谱等结果发现,Rh是以单原子的形式均匀的分布在Al2O3上并被无定型碳包覆,且Rh化学价态呈正价.而27Al固体核磁共振与密度泛函理论计算的结果则进一步确定Al2O3@C载体中存在的五配位的Al物种(AlV)是锚定Rh单原子的主要位点,AlV的不饱和的配位结构可以有效地稳定Rh单原子,对形成Rh位点的单原子分散至关重要.在间氯硝基苯选择性加氢制间氯苯胺反应中,与等体积浸渍法制备的Rh/C和Rh/γ-Al2O3纳米催化剂相比,Rh@Al2O3@C单原子催化剂表现出优异催化性能:其在313 K,氢气压力为20 bar的温和条件下转换频率(TOF)高达2317 molm-CNB·molRh-1·h-1,优于已报道的多相金属催化剂,是目前的最高值.此外,该催化剂展现出极佳的稳定性能,经过五次循环后,该催化剂对m-CAN的选择性仍旧保持在98%左右.Rh@Al2O3@C单原子催化剂的优异催化性能源自于金属单原子结构的形成对于金属位点电子结构的有效调节,进而调控催化剂加氢性能并实现对加氢脱卤副反应的抑制;与此同时,Rh@Al2O3@C催化剂增进了酸位点的可及性,从而促进了其串联步骤中包含的脱水反应的发生,进而有效提高催化剂的反应活性.  相似文献   
6.
王伟银  林露  齐海峰  曹文秀  李志  陈少华  邹晓轩  陈铁红  唐南方  宋卫余  王爱琴  罗文豪 《催化学报》2021,42(5):824-834,中插29-中插32
卤代苯胺是化学工业中重要的中间体,主要用于制造药物、聚合物、染料等含氮化学品,用多相金属催化剂催化卤代硝基芳烃加氢制备卤代苯胺是一种高效,绿色和可持续发展的生产工艺.该过程需要选择性加氢硝基基团,同时避免卤素基团的脱卤副反应发生.然而,化学选择性加氢存在巨大的挑战,难点在于催化剂的精准设计,一方面要求具备对硝基基团合适的加氢能力,另一方面要阻止对卤素基团的脱卤副反应发生.基于此,研制高效多相金属催化剂用于卤代硝基芳烃选择性加氢制备卤代苯胺反应引起了高度关注.近年来,单原子金属催化剂受到越来越多的关注,并在卤代硝基芳烃选择性加氢制备卤代苯胺反应中显现出极大的潜力.本文通过在金属有机骨架材料MIL-53(Al)自组装的过程中将金属Rh原位嫁接其骨架结构中,继而通过限域热解的方法制备了Rh@Al2O3@C单原子催化剂,其在间氯硝基苯(m-CNB)加氢制间氯苯胺(m-CAN)反应中显现了高效催化选择性.球差校正高角度环形暗场模式的透射电镜,CO作为探针分子的红外光谱和X射线光电子能谱等结果发现,Rh是以单原子的形式均匀的分布在Al2O3上并被无定型碳包覆,且Rh化学价态呈正价.而27Al固体核磁共振与密度泛函理论计算的结果则进一步确定Al2O3@C载体中存在的五配位的Al物种(AlV)是锚定Rh单原子的主要位点,AlV的不饱和的配位结构可以有效地稳定Rh单原子,对形成Rh位点的单原子分散至关重要.在间氯硝基苯选择性加氢制间氯苯胺反应中,与等体积浸渍法制备的Rh/C和Rh/γ-Al2O3纳米催化剂相比,Rh@Al2O3@C单原子催化剂表现出优异催化性能:其在313 K,氢气压力为20 bar的温和条件下转换频率(TOF)高达2317 molm-CNB·molRh-1·h-1,优于已报道的多相金属催化剂,是目前的最高值.此外,该催化剂展现出极佳的稳定性能,经过五次循环后,该催化剂对m-CAN的选择性仍旧保持在98%左右.Rh@Al2O3@C单原子催化剂的优异催化性能源自于金属单原子结构的形成对于金属位点电子结构的有效调节,进而调控催化剂加氢性能并实现对加氢脱卤副反应的抑制;与此同时,Rh@Al2O3@C催化剂增进了酸位点的可及性,从而促进了其串联步骤中包含的脱水反应的发生,进而有效提高催化剂的反应活性.  相似文献   
7.
对于苯环上含有各种可还原基团(如–C=C,–CN,–C≡C)的硝基芳烃,通过选择性加氢来制备芳香胺类化合物依然充满挑战.负载型纳米催化剂通常存在过度加氢的缺陷,虽然通过覆盖部分金属位点等方法可改善其选择性,但多是以牺牲催化活性为代价.得益于较高的原子利用率以及孤立的活性位结构,单原子催化剂在硝基芳烃选择性加氢反应中崭露头角.例如Pt1/FeOx单原子催化剂在3-硝基苯乙烯加氢反应中对目标产物的选择性高于99%,且转化频率(TOF)是Pt纳米催化剂的20倍以上.然而,已报道的单原子催化体系中,活性组分多为Pt族贵金属,且以有机溶剂为反应介质,不符合绿色化学理念.本文以环境友好型溶剂——压缩CO2为反应介质,以氮掺杂碳负载非贵金属Co单原子(Co-N-C)为催化剂,实现了3-硝基苯乙烯的选择性加氢,且反应体系中无任何有机溶剂和助剂.在温和(60 oC,3 MPa H2(RT),总压8.1 MPa)的反应条件下,3-硝基苯乙烯可完全转化,目标产物3-乙烯基苯胺的选择性达到>99%,且产物可通过简单卸压直接分离.Co-N-C单原子催化剂表现出较高的稳定性,循环使用4次以后活性并无明显降低.HAADF-STEM表征发现反应后的催化剂中,Co仍然呈单原子分散.研究发现,通过改变CO2压力(即CO2相行为)可调变H2在其中的溶解度以及在加氢反应中的反应级数,进而调变反应速率.通常认为,催化活性会随CO2压力增大呈线性增加,而本文中转化率却随CO2压力增加呈现"倒V型"曲线关系,即当体系总压为8.1 MPa(PCO2=5.0 MPa)时,转化率达到最大值(100%),而升高或降低CO2压力均会显著降低催化活性.为解释"倒V型"曲线的成因,通过含可视窗的高压釜研究了3-硝基苯乙烯/CO2/H2三元体系的相行为.发现当总压为13.4 MPa时,体系为均匀的一相(即3-硝基苯乙烯完全溶解在CO2中);而当总压为8.1 MPa时,却形成了气-液两相.用激光笔照射高压釜上部的气相时,出现了明显的丁达尔现象,说明其中溶解有少量的3-硝基苯乙烯,呈胶体分散;底部为CO2膨胀的3-硝基苯乙烯液相,且该膨胀行为通过硝基苯-CO2二元相行为研究得到证实(即在一定CO2压力下,6 mL硝基苯可被CO2膨胀至充满整个高压釜(容积为29.3 mL)).动力学研究发现,在不含CO2以及总压为11.2 MPa时,H2的反应级数为~0.5;而当总压为8.1 MPa(CO2压力为5.0 MPa)时,H2的级数降为0,说明该压力下H2的溶解度显著增加.通过Peng-Robinson方程计算了不同CO2压力下H2的溶解度,发现H2溶解度与CO2压力也呈"倒V型"曲线关系,且最高点对应的CO2压力与上述转化率-PCO2曲线一致.因此,当总压为8.1 MPa,CO2分压为5.0 MPa时形成了CO2膨胀的3-硝基苯乙烯液体,溶解入该膨胀液体的CO2促进了H2的溶解,进而使H2的反应级数降为0,从而促进了加氢反应的进行.综上,本文以压缩CO2为溶剂,以非贵金属基Co-N-C为催化剂,发展了一种3-硝基苯乙烯绿色选择性加氢途径.同时发现,改变CO2压力可调变反应体系的相行为及反应动力学行为,进而调变催化性能.该研究结果可为调变压缩CO2介质中进行的其它催化转化反应性能提供借鉴.  相似文献   
8.
纤维素直接催化转化制乙二醇是一条极具吸引力的生物质转化途径,有助于减轻化石能源资源的消耗。综述了从该反应途径的发现到获得高效、高稳定性催化剂的快速发展过程。基于对钨基催化剂的大量研究结果,本文讨论了反应机制,明确了反应路径、催化剂状态、钨物种及加氢催化活性中心各自在串联反应中的作用。围绕该反应过程的工业化应用需要,讨论了有关原生木质纤维素生物质催化转化以及高效反应过程的发展策略。在此基础上,将纤维素催化转化制乙二醇过程与生物质发酵制丙酮-丁醇-乙醇的生物炼制路线进行整合,构建出一个理想的反应过程潜在应用范例。最后,对纤维素催化转化制乙二醇反应过程进行了总结和前景展望.  相似文献   
9.
选用纤维二糖作为探针分子,探索纤维素催化转化制备乙二醇过程的反应路径.分别考察了纤维二糖和葡萄糖在双组分催化剂H2WO4和Ru/C下的催化反应活性.结果表明,乙二醇不仅来自于纤维二糖水解产物葡萄糖的逆羟醛缩合作用,同时也可以来自于纤维二糖的直接逆羟醛缩合过程.而且,纤维二糖的直接逆羟醛缩合作用对糖苷键的水解也有一定的促进作用.比较发现,钨基催化剂作用下纤维二糖的逆羟醛缩合反应活性比葡萄糖要低,因此乙醇醛可以缓慢产生并在Ru/C催化剂上迅速加氢生成乙二醇.使得以纤维二糖作为原料比以葡萄糖作为原料时获得更高的乙二醇收率.  相似文献   
10.
采用介质阻挡放电等离子体技术可以在低温、常压下实现对纳米金催化剂中保护基团的有效去除.本文通过对不同保护基团(聚乙烯吡咯烷酮和半胱氨酸)保护的金催化剂进行等离子体预处理,发现采用该技术能有效去除载体中的层间阴离子,还可能将金原子与保护基团之间的化学键打断.通过X射线粉末衍射对等离子体处理后的样品和未经处理的样品进行表征,发现经等离子体处理后的样品,载体从水滑石结构变为复合氧化物结构,这说明等离子体处理可将载体中的羟基和羰基除去,从而引起载体结构变化.热重分析结果显示,经等离子体处理后的样品失重量(19%-23%)与未处理样品的失重量(31%)相比差10%左右,这说明采用该方法可以在一定程度上去除纳米金表面保护基团和载体的层间阴离子.用紫外-可见光谱和高角环形暗场像-扫描透射电子显微镜对催化剂中金颗粒的尺寸分布和平均粒径进行分析,发现金颗粒在等离子体处理过后其粒径没有发生严重聚集,平均粒径由未处理时的1.4-1.7 nm轻微长大至2.4-3.7 nm.以含硫醇化合物(半胱氨酸)保护的金原子团簇催化剂为例考察了等离子体不同处理时间的影响,发现随着处理时间从25 min延长至150 min,样品的颜色从浅紫色变为暗紫色.结合XRD和TGA等结果可知,随着处理时间的延长,催化剂中保护基团的去除度逐渐提高.CO氧化反应活性评价结果显示,与未经处理的样品相比,经等离子体处理后的样品催化CO氧化反应活性有明显提高,且随预处理时间延长,活性有提高的趋势.动力学测试结果表明,经等离子体处理后的样品催化CO氧化的表观活化能低至1.2-2.9 k J/mol,接近于文献中报道的Au/TiO_2催化剂.这说明作为一种催化剂处理方法,介质阻挡放电等离子体技术可以有效去除催化剂中的保护剂,且因其处理条件相对温和,可在一定程度上保持金颗粒尺寸的稳定,这对于控制合成负载型小尺寸的金催化剂具有重要意义.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号