首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 321 毫秒
1.
This paper presents a facile method for the preparation of snowman-like Janus particles (SJP) with asymmetric fluorescent property via seeded emulsion polymerization, in which in situ formed raspberry-like cadmium sulfide/poly(styrene–divinylbenzene–acrylic acid) nanocomposite particles (RNP) were used as the seeds. The as-prepared RNP and SJP have been thoroughly characterized by transmission electron microscopy, field-emission scanning electron microscopy, thermogravimetric analysis, X-ray powder diffraction, Fourier transform infrared, ultraviolet visible, and photoluminescent spectrometry. It is found that the size ratio of the polymer bulge/inorganic seed part could be continuously tuned as well as the composition of polymer bulges by changing the composition of monomer mixtures and monomer/seed weight ratio. The obtained Janus particles possess amphiphilic properties which can be further used as solid surfactants to stabilize W/O emulsions and successively to construct hierarchical structured materials. Meanwhile, their asymmetric fluorescent properties may be exploited to detect their assembled situation and orientation at the oil–water interface of emulsions as well as at the surface of hierarchical structured materials.
Figure
Snowman-like Janus particles with asymmetric fluorescent property are successfully synthesized via seeded emulsion polymerization using in situ formed raspberry-like cadmium sulfide/poly(styrene–divinylbenzene–acrylic acid) nanocomposite particles as the seeds  相似文献   

2.
In this research, submicron and carboxyl‐functionalized magnetic latex particles were elaborated by using seeded emulsion polymerization technique in presence of oil‐in‐water (o/w) magnetic emulsion as seed. The polymerization conditions were optimized in order to get well‐defined latex particles with magnetic core and polymer shell bearing carboxylic (–COOH) functionality. Starting from (o/w) magnetic emulsion as seed, synthesis process was performed by copolymerization of styrene (St) monomer with the cross‐linker divinylbenzene (DVB) in presence of 4,4′‐azobis(4‐cyanopentanoic acid) (ACPA) as a carboxyl‐bearing initiator. The prepared magnetic latex particles were first characterized in terms of particle size, chemical composition, morphology, magnetic properties, magnetic content, and colloidal stability using various techniques, e.g. particle size analyzer using dynamic light scattering (DLS) technique, Fourier transform infrared, transmission electron microscopy, vibrating sample magnetometer, thermogravimetric analysis, and zeta potential measurements as a function of pH of the dispersion media, respectively. The prepared magnetic latex particles were then used as second seed for further functionalization with methacrylic acid (MAA) in order to enhance carboxylic groups on the magnetic particle's surface. The results showed that final magnetic latex particles possessed spherical morphology with core‐shell structure and enriched carboxylic acid functionality. More importantly, they exhibited superparamagnetism with high magnetic content (58.42 wt%) and high colloidal stability, which considered as the main requirements for their application in the biomedical diagnostic domains. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
阚成友 《高分子科学》2014,32(2):177-186
Three-layer core/shell latex particles with various shell crosslinking level and shell thickness were prepared by multistep emulsion polymerization, and the hollow latex particles with different morphologies were then obtained after alkali post-treatment. Influences of divinyl benzene(DVB) content and the core/shell mass ratio on emulsion polymerization and particle morphology were investigated. Results showed that with the increase of DVB content, the percentage of total amount of ―COOH on the particle surface and free in aqueous phase(PSFa) decreased, and the morphology of the post-treated particles underwent evolution from cracked, intact hollow to deficient swelling structure. Decreasing the core/shell mass ratio could not only make more carboxyl groups encapsulated by the shell, but also increase the shell resistance to the swelling of the core. The uniform hollow latex particles with intact morphology were obtained when the DVB content was 3.54 wt% and the core/shell mass ratio was 1/6.  相似文献   

4.
Polymer latex particles were synthesized with multilayer core-shell structure via surface cross-linking emulsion polymerization. The latex core is coated with a five-layer shell. The polymerization was done in a semicontinuous fashion monitored by a dynamic laser scattering (DLS). The copolymer in each layer is designed with alternating high and low glass transition temperature (T(g)). Divinylbenzene (DVB) was added as the cross-linking agent in the synthesis of the "hard" layers to prevent the molecular diffusion from the adjacent "soft" layers. The layer-by-layer increment on the latex core is proved by the alternating changes on the film-formation capabilities of different latex emulsions at room temperature in correspondence with the variance in the T(g) of the outermost polymer layer. The detailed morphologies of the films formed by the latex with different number of layers were characterized by atom force microscopy (AFM). The deformation of the latex particles is largely depended on the nature of the polymer in the outermost layer of the latex particles. Further characterization carried out by multifrequency temperature-modulated differential scanning calorimetry (TOPEM-DSC) confirmed the layer-by-layer structure of the particles, although the molecular redistribution and the interlayer structures were observed. The work provides a routine toward the synthesis of multilayer polymer latexes.  相似文献   

5.
Amino-functionalized latex particles were obtained batchwise by emulsion copolymerization of styrene and vinylbenzylamine hydrochloride (VBAH) in the presence of 2-2-Azobis(2-amidinopropane) HCl (V50). Size monodispersity of the particles was improved by using divinylbenzene (DVB) as a third monomer at a 2% molar ratio. Surface amino group titration was performed spectrometrically with N-succinimidyl 3-(2 pyridyldithio)propionate (SPDP). The yields of functional monomer incorporation were up to 85%.  相似文献   

6.
Silver–polypyrrole (PPy) core–shell nanoparticles have been fabricated by a facile one-step “green” synthesis using silver nitrate as an oxidant and soluble starch as an environmentally benign stabilizer and co-reducing agent. The morphology and optical properties of the particles were significantly affected by the reaction temperature, soluble starch concentration, and ratio of pyrrole monomer to AgNO3 oxidant. The core–shell nanoparticles exhibited outstanding dispersive properties in deionized water due to residual starch, as compared with PPy nanoparticles in which starch was absent. The mechanism of core–shell nanoparticle formation was elucidated through TEM imaging vs. reaction time. The colloidal and chemical stability of the nanoparticles was demonstrated in a variety of solvents, including acids, bases, and ionic and organic solvents, through monitoring the localized surface plasmon resonance of the nanoparticles. Furthermore, the catalytic properties of these silver–PPy core–shell nanoparticles were also demonstrated.
Figure
Schematic illustration of silver-PPy core-shell nanoparticle formation and methylene blue (MB) reduction using the core-shell nanoparticles as a catalyst.  相似文献   

7.
The particle morphology and percent grafting were investigated as a function of the crosslink density of the seed latex in two systems of core/shell latexes of polybutadiene/polymethyl methacrylate (PB/PMMA) and styrene–butadiene rubber/polymethyl methacrylate (SBR/PMMA) prepared by seeded emulsion polymerization at 50°C. The thin layer chromatography/flame ionization detection (TLC/FID) technique was used to characterize the grafting efficiency of the core/shell latexes. The percent grafting of the shell polymer was found to decrease with increasing the crosslink density of the core material. The particle morphology and precent grafting were also investigated as a function of composition and structure of the core material in four core/shell latex systems: polybutadiene/styrene–acrylonitrile copolymer (PB/SAN), (styrene-butadiene) random copolymer/styrene acrylonitrile copolymer (S:B/SAN), polystyrene : polybutadiene/styrene-acrylonitrile copolymer (PS:PB/SAN) and Kraton/styrene-acrylonitrile copolymer (Kraton/SAN), which were prepared by direct emulsification for the seed followed by emulsion polymerization at 70°C for the shell polymer. Grafting and crosslinking of the core material were found to be competitive reactions depending on the microstructure of the seed latex.  相似文献   

8.
反应性复合乳液的合成、表征及其交联反应   总被引:1,自引:0,他引:1  
利用种子半连续乳液聚合方法合成了核层或壳层带有环氧基以及壳层带有羧基的3种不同核/壳结构的乳胶粒子,通过物理共混带环氧基和羧基的乳胶粒子,得到了两种反应性复合乳液.利用透射电镜和激光动态光散射对乳胶粒子进行了表征,其粒径分布较窄,粒径分布的多分散系数为0.062,平均粒径约76 nm,乳胶粒子具有明显的核/壳结构.通过胶膜的凝胶率和膨胀率的测定和红外光谱分析对反应性复合乳液中乳胶粒子的扩散及交联反应进行了研究,并探讨了不同核壳结构复合乳液对涂膜机械性能的影响.研究表明,当反应性复合乳液中的环氧基和羧基分别分布在乳胶粒子的核层和壳层时,有利于聚合物分子链的充分扩散和化学交联反应的进行,从而提高涂膜的物理化学性能,当甲基丙烯酸缩水甘油酯(GMA)含量为10 wt%时,涂膜的拉伸强度达20.3 MPa.  相似文献   

9.
Polystyrene (PS) UV absorber microspheres of narrow size distribution have been prepared in two ways: (1) Entrapment of the UV absorber molecule, 2-(5-chloro-2H-benzotriazole-2-yl)-6-(1, 1-dimethylethyl)-4-methyl-phenol) [TINUVIN? 326] within uniform PS template microspheres by swelling these template particles with methylene chloride emulsion droplets containing the TINUVIN, followed by evaporation of the methylene chloride from the swollen PS microspheres. (2) A similar swelling process, substituting the methylene chloride emulsion droplets containing the TINUVIN for methylene chloride emulsion droplets containing the monomers, divinyl benzene (DVB) and styrene (S) and the initiator, benzoyl peroxide and TINUVIN. The monomers within the swollen microspheres were then polymerized by elevating the temperature of the swollen particles to 73?°C. The influence of the weight ratio [TINUVIN]/[PS] on the entrapped percentage of TINUVIN was elucidated. Polyethylene/TINUVIN, PE/(PS/TINUVIN), and PE/(PS/P(S-DVB-TINUVIN)) resins and films were prepared by melt blending of low-density PE with TINUVIN and with the UV absorber microspheres, followed by a tubular blown process. The UV absorption of these composite films was demonstrated. The leakage kinetics of the TINUVIN from these composite films was according to the following order: PE/(PS/P(S-DVB-TINUVIN))?<?PE/(PS/TINUVIN)?<?PE/TINUVIN.
Figure
Polystyrene (PS) UV absorber microspheres of narrow size distribution have been prepared in two ways: (1) Entrapment of the UV absorber molecule, 2-(5-chloro-2H-benzotriazole-2-yl)-6-(1, 1-dimethylethyl)-4-methyl-phenol) [TINUVIN? 326] within uniform PS template microspheres by swelling these template particles with methylene chloride emulsion droplets containing the TINUVIN, followed by evaporation of the methylene chloride from the swollen PS microspheres. (2) A similar swelling process, substituting the methylene chloride emulsion droplets containing the TINUVIN for methylene chloride emulsion droplets containing the monomers, divinyl benzene (DVB) and styrene (S) and the initiator, benzoyl peroxide and TINUVIN. The monomers within the swollen microspheres were then polymerized by elevating the temperature of the swollen particles to 73 °C. Polyethylene/TINUVIN, PE/(PS/TINUVIN) and PE/(PS/P(S-DVB-TINUVIN)) resins and films were prepared by melt blending of low density PE with TINUVIN and with the UV absorber microspheres, followed by a tubular blown process. The UV absorption and leakage kinetics of these composite films was demonstrated.  相似文献   

10.
In order to prepare hollow latex particles with optimum morphology based on osmotic swelling principle, three- layer core/shell latex particles with 40 wt% MAA in the core were first prepared via multistep seeded emulsion copolymerization, in which monomers were added by a semi-continuous process with monomer addition under two different forms: pure monomers' mixture (monomer addition), and pre-emulsified monomers (pre-emulsion addition). Then, the hollow latex particles with different morphologies were obtained after alkali post-treatment. Influences of the monomer feeding mode on the emulsion polymerization and the particle morphology were investigated. Results showed that the pre- emulsion addition could significantly improve the polymerization stability in each step, and greatly enhance the uniformity of shell encapsulation. The sizes of the core and core/shell latex particles obtained by the pre-emulsion addition were smaller and more uniform than those synthesized by the monomer addition, and the hollow latex particles with intact morphology were generated by alkali post-treating of the core/shell latexes prepared from the pre-emulsion addition. As the core size increased, the morphology of the post-treated particles underwent evolution from hollow to collapse. Moreover, the mechanism of the particle morphological evolution was proposed.  相似文献   

11.
Cationic fluorocarbon emulsifier-free emulsion was prepared via a novel method of adding organic cosolvent N-methylpyrrolidone (NMP), which was characteristic of the reaction transferring from solution to emulsion polymerization system. The emulsion stability was analyzed by the coagulation and precipitation ratio. The properties of particles were characterized by dynamic laser light scattering, surface potential particle size analyzer, and transmission electron microscopy, respectively. The latex film surface properties and immersion behaviors were investigated by contact angles. The results showed that, with NMP increasing from 5 to 30 %, the emulsion stability became better. Also, particle sizes decreased from 264.0 to 95.5 nm, and their distribution transformed from multidispersion to monodispersion. Zeta potentials increased gently. Meanwhile, the latex film surface performance was slightly improved, and the more the content of NMP, the less the influence of the cure temperature on surface property. There was less mobility of fluorinated groups in the films with more NMP used.
Figure
A novel method was to prepare cationic fluorocarbon emulsifier-free emulsion. It was characteristic of the reaction transferred from solution to emulsion reactive polymerization system, of which the cosolvent NMP was used in the first step of the reaction. Its influences on particle properties were obvious. With NMP increasing, the particle sizes decreased, their distribution transformed from multidispersion to monodispersion, and the D decreased from 3.88 to 1.09. Their impact on particle properties also affected latex film surface properties and immersion behaviors.  相似文献   

12.
The synthesis of functionalized submicrometer magnetic latex particles is described as obtained from a preformed magnetic emulsion composed of organic ferrofluid droplets dispersed in water. Composite (polystyrene/γ‐Fe2O3) particles were prepared according to a two‐step procedure including the swelling of ferrofluid droplets with styrene and a crosslinking agent (divinyl benzene) followed by seeded emulsion polymerization with either an oil‐soluble [2,2′‐azobis(2‐isobutyronitrile)] or water‐soluble (potassium persulfate) initiator. Depending on the polymerization conditions, various particle morphologies were obtained, ranging from asymmetric structures, for which the polymer phase was separated from the inorganic magnetic phase, to regular core–shell morphologies showing a homogeneous encapsulation of the magnetic pigment by a crosslinked polymeric shell. The magnetic latexes were extensively characterized to determine their colloidal and magnetic properties. The desired core–shell structure was efficiently achieved with a given styrene/divinyl benzene ratio, potassium persulfate as the initiator, and an amphiphilic functional copolymer as the ferrofluid droplet stabilizer. Under these conditions, ferrofluid droplets were successfully turned into superparamagnetic polystyrene latex particles, about 200 nm in size, containing a large amount of iron oxide (60 wt %) and bearing carboxylic surface charges. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2642–2656, 2006  相似文献   

13.
Due to the existing interest in new hybrid particles in the colloidal range based on both magnetic and polymeric materials for applications in biotechnological fields, this work is focused on the preparation of magnetic polymer nanoparticles (MPNPs) by a single-step miniemulsion process developed to achieve better control of the morphology of the magnetic nanocomposite particles. MPNPs are prepared by surfactant-free miniemulsion polymerization using styrene (St) as a monomer, hexadecane (HD) as a hydrophobe, and potassium persulfate (KPS) as an initiator in the presence of oleic acid (OA)-modified magnetite nanoparticles. The effect of the type of cross-linker used [divinylbenzene (DVB) and bis[2-(methacryloyloxy)ethyl] phosphate (BMEP)] together with the effect of the amount of an aid stabilizer (dextran) on size, particle size distribution (PSD), and morphology of the hybrid nanoparticles synthesized is analyzed in detail. The mixture of different surface modifiers produces hybrid nanocolloids with various morphologies: from a typical core-shell composed by a magnetite core surrounded by a polymer shell to a homogeneously distributed morphology where the magnetite is uniformly distributed throughout the entire nanocomposite.  相似文献   

14.
Feng Pan  Jie Mao  Qiang Chen  Pengbo Wang 《Mikrochimica acta》2013,180(15-16):1471-1477
Magnetic Fe3O4@SiO2 core shell nanoparticles containing diphenylcarbazide in the shell were utilized for solid phase extraction of Hg(II) from aqueous solutions. The Hg(II) loaded nanoparticles were then separated by applying an external magnetic field. Adsorbed Hg(II) was desorbed and its concentration determined with a rhodamine-based fluorescent probe. The calibration graph for Hg(II) is linear in the 60 nM to 7.0 μM concentration range, and the detection limit is at 23 nM. The method was applied, with satisfying results, to the determination of Hg(II) in industrial waste water.
Figure
Functional magnetic Fe3O4@SiO2 core shell nanoparticles were utilized for solid phase extraction of Hg(II) from aqueous solutions, and the extracted Hg(II) was determined by a rhodamine-based fluorescent probe RP with satisfying results.  相似文献   

15.
首先用化学共沉淀法制备了Fe3O4纳米微粒,并对其表面进行改性。然后在分散介质水中,以二乙烯基苯(DVB)为交联剂,采用改进的乳液聚合法,制备了磁性Fe3O4为核、苯乙烯和丙烯酸的共聚物为壳的交联复合微球,并利用FT-IR、TEM、XRD和XPS等对其进行表征。结果表明:该复合微球的粒度分布均匀、表面含有一定羧基,为单分散性、表面功能化的交联磁性高分子纳米复合微球。  相似文献   

16.
<正>In this study,P(St-MAA) seed latex particles were first prepared via soap-free emulsion polymerization of styrene(St) and methacrylic acid(MAA),then the seed particles were allowed to swell with St at room temperature,and the P(St-MAA)/P(StNaSS) core/shell latex particles were then synthesized via seeded emulsion copolymerization of St and sodium styrene sulphonate (NaSS) using AIBN as initiator in the presence of N,N'-methylenebisacrylamide(BAA,water-soluble crosslinker).Results showed that the polymerization could be carried out smoothly when the ratio of BAA to total monomers was less than 3 mol%,the narrow dispersed P(St-MAA) seed particles with the diameter of 150 nm and the P(St-MAA)/P(St-NaSS) core/shell latexes with the particle size of about 200 nm were synthesized.When the 25/75 mole ratio of NaSS/(St + MAA) and 2 mol%of BAA were used in the seeded emulsion polymerization,the resulted P(St-MAA)/P(St-NaSS) latex product showed a low weight loss after water extraction,and the NaSS unit content in the whole particle and in the shell reached 11.7 mol%and 34.6 mol%,respectively.  相似文献   

17.
The synthesis of core-shell type polystyrene monodisperse particles with surface acetal groups was carried out by a two-step emulsion polymerization process. In a first step, the core was synthesized by batch emulsion polymerization of styrene (St), and in the second step, the shell was polymerized by batch emulsion terpolymerization of styrene, methacrylic acid (MAA), and methacrylamidoacetaldehyde dimethyl acetal (MAAMA), using the seed obtained previously. With the aim of analyzing the effect of the thickness of the shell, the pH of the reaction medium and the weight ratio of the termonomers to prepare the shell, on the amount of the functionalized groups, several core-shell type latex particles were synthesized by two-step emulsion polymerization in a batch reactor. The latexes were characterized by TEM and conductimetric titration to obtain the particle size distribution and the amount of carboxyl and acetal groups on the surface, respectively. Looking for the applicability of the synthesized latexes in immunoassays, IgG a-CRP rabbit antibody was covalently bonded to the surface of the particles synthesized in neutral medium. The complex latex-protein was immunologically active against the CRP antigen. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1605–1610, 1997  相似文献   

18.
具有核壳结构磁性复合微球的制备与表征   总被引:2,自引:0,他引:2  
龚涛  汪长春 《高分子学报》2008,(11):1037-1042
采用两步法制备了具有核壳结构的Fe3O4/P(MMA/DVB)(core)-P(St/GMA/DVB)(shell)磁性复合微球.首先,用改进的细乳液聚合制备了Fe3O4/P(MMA/DVB)微球;然后,加入总量不同的苯乙烯(St)、甲基丙烯酸缩水甘油酯(GMA)和二乙烯基苯(DVB),通过种子乳液聚合,制备了不同磁含量的核壳结构的磁性复合微球.分别用X-射线衍射(XRD)、高倍透射电镜(HR-TEM)、热重分析(TGA)、振动样品磁力计(VSM)等手段对磁性微球的性能进行了表征.实验结果表明,Fe3O4/P(MMA/DVB)微球的磁含量为84 wt%;通过改变加入壳层单体的量,核壳复合微球的磁含量可控在20 wt%~76 wt%之间.该微球具有超顺磁性,相应的饱和磁化强度为12~50Am2/kg.  相似文献   

19.
阚成友 《高分子科学》2016,34(10):1240-1250
Cationic poly(styrene-co-N,N-dimethylaminoethyl methacrylate) (P(St-co-DMAEMA)) latexes were prepared in the absence of surfactant by using 2,2’ -azobis (2-methylpropionamidine) dihydrochloride (AIBA) as the initiator. The effects of the AIBA concentration, HCl/DMAEMA molar ratio and DMAEMA amount on the emulsion polymerization and the latex properties were investigated. The particle morphology and size, the zeta potential and the amino distribution of the P(St-co-DMAEMA) latexes were characterized by transmission electron microscope (TEM), dynamic light scattering (DLS) and conductometric titration, respectively. Results showed that the emulsion polymerization performed smoothly with high monomer conversion and narrow particle size distribution under the optimized conditions with AIBA concentration of 1 wt%, HCl/DMAEMA molar ratio of 1.2 and DMAEMA content of 5 wt%. The diameter of the dried latex particles decreased and the density of amino groups on the particle surfaces increased with increasing the DMAEMA content. The zeta potential of the P(St-co-DMAEMA) latexes was pH-dependent and the zero point was around at pH 7.2. A facile method was developed to fabricate P(St-co-DMAEMA)/laponite hybrid nanoparticles via electrostatic adsorption, in which the loading capacity of laponite platelets reached 17.7 wt%, and the resultant hybrid nanoparticles showed good thermal stability.  相似文献   

20.
Surfactant-stabilized polystyrene (PS) latex particles with a mean hydrodynamic diameter of 155 nm were prepared by aqueous emulsion polymerization using 2,2'-azobis(2-amidinopropane) hydrochloride as a cationic radical initiator. Seeded aqueous emulsion copolymerizations of 2-(dimethylamino)ethyl methacrylate (DMA) and ethylene glycol dimethacrylate (EGDMA) were conducted in the presence of these PS particles to produce two batches of colloidally stable core-shell latex particles, in which the shell comprised a cross-linked P(DMA-stat-EGDMA) overlayer. Both the PS and PS/P(DMA-stat-EGDMA) latexes were characterized in terms of their particle size, morphology, and composition using dynamic light scattering, electron microscopy, and FT-IR spectroscopy, respectively. Using the PS/P(DMA-stat-EGDMA) latex particles as a pH-responsive particulate ('Pickering'-type) emulsifier, polydisperse n-dodecane-in-water emulsions were prepared at pH 8 that could be partially broken (demulsified) on lowering the solution pH to 3. These emulsions were characterized in terms of their emulsion type, mean droplet diameter, and morphology using electrical conductivity and Mastersizer measurements, optical microscopy, and scanning electron microscopy (using critical point drying for sample preparation).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号