首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method to transfer allyl esters to thioesters under a solid phase condition has been developed to synthesize peptide thioesters. A Fmoc chemistry has been applied to synthesize the peptide allyl esters, which are selectively transferred to the expected peptide thioesters under solid phase synthesis conditions successfully.  相似文献   

2.
N‐Sulfanylethylanilide (SEAlide) peptides were developed with the aim of achieving facile synthesis of peptide thioesters by 9‐fluorenylmethyloxycarbonyl (Fmoc)‐based solid‐phase peptide synthesis (Fmoc SPPS). Initially, SEAlide peptides were found to be converted to the corresponding peptide thioesters under acidic conditions. However, the SEAlide moiety was proved to function as a thioester in the presence of phosphate salts and to participate in native chemical ligation (NCL) with N‐terminal cysteinyl peptides, and this has served as a powerful protein synthesis methodology. The reactivity of a SEAlide peptide (anilide vs. thioester) can be easily tuned with or without the use of phosphate salts. This interesting property of SEAlide peptides allows sequential three‐fragment or unprecedented four‐fragment ligation for efficient one‐pot peptide/protein synthesis. Furthermore, dual‐kinetically controlled ligation, which enables three peptide fragments simultaneously present in the reaction to be ligated in the correct order, was first achieved using a SEAlide peptide. Beyond our initial expectations, SEAlide peptides have served in protein chemistry fields as very useful crypto‐peptide thioesters. DOI 10.1002/tcr.201200007  相似文献   

3.
We report an operationally simple method to facilitate chemical protein synthesis by fully convergent and one-pot native chemical ligations utilizing the fluorenylmethyloxycarbonyl (Fmoc) moiety as an N-masking group of the N-terminal cysteine of the middle peptide thioester segment(s). The Fmoc group is stable to the harsh oxidative conditions frequently used to generate peptide thioesters from peptide hydrazide or o-aminoanilide. The ready availability of Fmoc-Cys(Trt)-OH, which is routinely used in Fmoc solid-phase peptide synthesis, where the Fmoc group is pre-installed on cysteine residue, minimizes additional steps required for the temporary protection of the N-terminal cysteinyl peptides. The Fmoc group is readily removed after ligation by short exposure (<7 min) to 20 % piperidine at pH 11 in aqueous conditions at room temperature. Subsequent native chemical ligation reactions can be performed in presence of piperidine in the same solution at pH 7.  相似文献   

4.
An efficient new strategy for the synthesis of peptide and glycopeptide thioesters is described. The method relies on the side-chain immobilization of a variety of Fmoc-amino acids, protected at their C-termini, on solid supports. Once anchored, peptides were constructed using solid-phase peptide synthesis according to the Fmoc protocol. After unmasking the C-terminal carboxylate, either thiols or amino acid thioesters were coupled to afford, after cleavage, peptide and glycopeptide thioesters in high yields. Using this method a significant proportion of the proteinogenic amino acids could be incorporated as C-terminal amino acid residues, therefore providing access to a large number of potential targets that can serve as acyl donors in subsequent ligation reactions. The utility of this methodology was exemplified in the synthesis of a 28 amino acid glycopeptide thioester, which was further elaborated to an N-terminal fragment of the glycoprotein erythropoietin (EPO) by native chemical ligation.  相似文献   

5.
We report an operationally simple method to facilitate chemical protein synthesis by fully convergent and one‐pot native chemical ligations utilizing the fluorenylmethyloxycarbonyl (Fmoc) moiety as an N‐masking group of the N‐terminal cysteine of the middle peptide thioester segment(s). The Fmoc group is stable to the harsh oxidative conditions frequently used to generate peptide thioesters from peptide hydrazide or o‐aminoanilide. The ready availability of Fmoc‐Cys(Trt)‐OH, which is routinely used in Fmoc solid‐phase peptide synthesis, where the Fmoc group is pre‐installed on cysteine residue, minimizes additional steps required for the temporary protection of the N‐terminal cysteinyl peptides. The Fmoc group is readily removed after ligation by short exposure (<7 min) to 20 % piperidine at pH 11 in aqueous conditions at room temperature. Subsequent native chemical ligation reactions can be performed in presence of piperidine in the same solution at pH 7.  相似文献   

6.
An operationally simple method for the synthesis of peptide thioesters is developed using standard Fmoc solid-phase peptide synthesis procedures. The method relies on the use of a premade enamide-containing amino acid which, in the final TFA cleavage step, renders the desired thioester functionality through an irreversible intramolecular N-to-S acyl transfer.  相似文献   

7.
Swinnen D  Hilvert D 《Organic letters》2000,2(16):2439-2442
A short route to peptide C-terminal thioesters was developed that does not require the use of special linkers or resins and is compatible with standard Fmoc chemistry. Following conventional solid-phase peptide synthesis, an excess of Me(2)AlCl and EtSH in dichloromethane cleaves peptides from Wang or Pam resins to give the corresponding thioesters directly in good yield and purity.  相似文献   

8.
A highly efficient and simple Fmoc-based preparation of peptide αthioesters is presented. After Fmoc/t-butyl solid-phase synthesis on 2-chlorotrityl resin the C-terminal carboxylic group of the protected peptide is directly converted to the corresponding thioester. The method leads to very high yields, shows a low level of epimerization and can be easily applied also for the preparation of long peptide αthioesters as demonstrated for the 41 amino acid N-terminal fragment of pro-neuropeptide Y (proNPY 1-40).  相似文献   

9.
Eom KD  Tam JP 《Organic letters》2011,13(10):2610-2613
An efficient method compatible with Fmoc synthesis for preparing peptide thioesters via an acid-catalyzed tandem "thiol switch" of esters is described first by an intramolecular O-S acyl shift and then by an intermolecular S-S exchange, with concurrent deblocking of side chain protection groups.  相似文献   

10.
C-Terminal peptide thioesters are key intermediates in the synthesis/semisynthesis of proteins and of cyclic peptides by native chemical ligation. They are prepared by solid-phase peptide synthesis (SPPS) or biosynthetically by protein splicing techniques. Until recently, the chemical synthesis of C-terminal alpha-thioester peptides by SPPS was largely restricted to the use of Boc/Benzyl chemistry due to the poor stability of the thioester bond to the basic conditions required for the deprotection of the N(alpha)-Fmoc group. In the present work, we describe a new method for the SPPS of C-terminal thioesters using Fmoc/t-Bu chemistry. This method is based on the use of an aryl hydrazine linker, which is totally stable to conditions required for Fmoc-SPPS. When the peptide synthesis has been completed, activation of the linker is achieved by mild oxidation. This step converts the acyl hydrazine group into a highly reactive acyl diazene intermediate which reacts with an alpha-amino acid alkyl thioester (H-AA-SR) to yield the corresponding peptide alpha-thioester in good yield. This method has been successfully used to prepare a variety of peptide thioesters, cyclic peptides, and a fully functional Src homology 3 (SH3) protein domain.  相似文献   

11.
Sharma RK  Tam JP 《Organic letters》2011,13(19):5176-5179
An efficient "thiol switch" approach for the synthesis of peptide thioesters via an acid-catalyzed N-S acyl shift and a thioester exchange reaction in tandem with concurrent removal of protecting groups is described. This method employs novel 2-(thiomethyl)thiazolidine (TMT)-anchored resins and is fully compatible with Fmoc chemistry.  相似文献   

12.
[reaction: see text] We describe the Fmoc solid-phase synthesis of peptide thioesters based on the alkylation of the safety-catch sulfonamide linker with a protected 2-mercaptoethanol derivative. The thioester is generated on the solid phase after the peptide chain assembly as a consequence of an intramolecular N,S-acyl shift. Depending on the stability of the spacer separating the sulfonamide linker from the resin toward TFA, treatment of the peptidyl resin with TFA led to a soluble or supported deprotected thioester.  相似文献   

13.
In the course of the chemical synthesis of human protein mitogaligin, we present here a simple method to prepare peptide thioesters using Fmoc chemistry. The hydroxyl side chain of serine was reacted with a trichloroacetimidate Wang resin to anchor it on solid phase. After peptide elongation and orthogonal unmasking of the C-terminus, the amino thioester was introduced under optimized conditions to avoid epimerization.  相似文献   

14.
Aryl thioesters of peptide segments were prepared by the conventional 9-fluorenylmethoxycarbonyl (Fmoc) strategy using a novel N-alkyl cysteine (NAC)-assisted thioesterification reaction. The peptide carrying NAC at its C-terminus was prepared by the Fmoc strategy and converted to the aryl thioester by 4-mercaptophenylacetic acid (MPAA) treatment without significant side reactions. The peptide thioester was used for the efficient preparation of 95-amino acid (AA) chemokine CCL27 by an Ag(+)-free thioester method.  相似文献   

15.
Formation of peptide thioesters, based on an N to S acyl shift mediated by an auxiliary, N-4,5-dimethoxy-2-mercaptobenzyl (Dmmb) group, under acidic conditions, is described. The protected peptide was assembled on a hydroxymethylphenylacetamidomethyl resin via an N-Dmmb-amino acid residue according to standard Fmoc solid-phase peptide synthesis following treatment with trifluoroacetic acid. The peptide α-thioester was released from the resin by reaction with 2-mercaptoethanesulfonic acid in the presence of N,N-diisopropylethylamine.  相似文献   

16.
Peptide thioesters play a key role in convergent protein synthesis strategies such as native chemical ligation, traceless Staudinger ligation, and Ag(+) -mediated thioester ligation. The Boc-based solid-phase synthesis provides a very reliable access to peptide thioesters. However, the acid lability of many peptide modifications and the requirements of most parallel peptide synthesizers call for the milder Fmoc-based solid-phase synthesis. The Fmoc-based synthesis of peptide thioesters is more cumbersome and typically proceeds with lower yields than the synthesis of peptide acids and peptide amides. The success of native chemical ligation and related technologies has sparked intensive research effort devoted to the development of new methods. The recent progress in this rapidly expanding field is reviewed.  相似文献   

17.
A new approach is described for the general Fmoc-based solid-phase synthesis of (glyco)peptide aryl thioesters. A peptide alkyl oxoester obtained by standard Fmoc-based chain elongation undergoes an O-to-S acyl shift, and is followed by alkyl thioester exchanges with a large excess of aryl thiol, affording the corresponding peptide aryl thioester. The newly developed methodology is useful for the chemical synthesis of post-translationally modified proteins because of its compatibility with standard Fmoc-SPPS conditions. In addition, the peptide aryl thioesters are essential intermediates for chemical synthesis of proteins by kinetically controlled convergent strategy.  相似文献   

18.
Oxidized methionine residues in peptide thioesters can be reduced rapidly with NH4I to the corresponding sulfide by using Me2S as coreductant. Comparative reduction studies employing a 28-amino acid peptide thioester with an N-terminal methionine oxide as model system revealed the importance of the Me2S addition to avoid hydrolysis of the reactive thioester functionality. In addition, an NH4I-Me2S containing cleavage cocktail has been used for the global deprotection of various thioesters which revealed no hydrolysis or oxidative side products. These results demonstrate the general applicability of sulfoxides as protecting groups in advanced peptide synthesis techniques by facilitating the preparation and handling of methionine containing peptide thioesters for native chemical ligation (NCL).  相似文献   

19.
Raz R  Rademann J 《Organic letters》2011,13(7):1606-1609
tert-Butyl thioesters display an astonishing stability toward secondary amines in basic milieu, in contrast to other alkyl and aryl thioesters. Exploiting this enhanced stability, peptide thioesters were synthesized in a direct manner, applying a tert-butyl thiol linker for Fmoc-based solid-phase peptide synthesis.  相似文献   

20.
Fully unprotected peptide o‐aminoanilides can be efficiently activated by NaNO2 in aqueous solution to furnish peptide thioesters for use in native chemical ligation. This finding enables the convergent synthesis of proteins from readily synthesizable peptide o‐aminoanilides as a new type of crypto‐thioesters. The practicality of this approach is shown by the synthesis of histone H2B from five peptide segments. Purification or solubilization tags, which are sometimes needed to improve the efficiency of protein chemical synthesis, can be incorporated into the o‐aminoanilide moiety, as demonstrated in the preparation of the cyclic protein lactocyclicin Q.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号