首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   408篇
  免费   229篇
  国内免费   343篇
化学   426篇
晶体学   28篇
力学   31篇
综合类   23篇
数学   39篇
物理学   433篇
  2024年   5篇
  2023年   13篇
  2022年   26篇
  2021年   16篇
  2020年   22篇
  2019年   15篇
  2018年   20篇
  2017年   25篇
  2016年   22篇
  2015年   24篇
  2014年   44篇
  2013年   44篇
  2012年   38篇
  2011年   46篇
  2010年   44篇
  2009年   39篇
  2008年   62篇
  2007年   40篇
  2006年   48篇
  2005年   38篇
  2004年   44篇
  2003年   48篇
  2002年   15篇
  2001年   30篇
  2000年   20篇
  1999年   23篇
  1998年   21篇
  1997年   16篇
  1996年   23篇
  1995年   16篇
  1994年   19篇
  1993年   14篇
  1992年   18篇
  1991年   12篇
  1990年   11篇
  1989年   9篇
  1988年   5篇
  1986年   1篇
  1984年   2篇
  1983年   2篇
排序方式: 共有980条查询结果,搜索用时 31 毫秒
1.
采用施加压力的方法将聚苯硫醚熔体凝固,凝固后获得的聚苯硫醚样品经过降温和卸压后在常温常压下回收. X射线衍射和差示扫描量热分析表明:约20 ms时间的快速压缩过程可以抑制熔体结晶,制备出非晶态聚苯硫醚块材,样品的表面及中心都是非晶态.非晶态聚苯硫醚的玻璃化转变温度和晶化温度分别为318和362 K.常压下的退火实验表明,非晶态聚苯硫醚在425 K等温结晶的产物为正交相晶型.压致凝固法中熔体的凝固不是靠温度变化,而是靠压力变化,样品表面和内部处在一致的温度下同时受压凝固,避免了热传导对非晶尺寸的影响,因此非常有利于获得结构均匀的大尺寸非晶态材料.  相似文献   
2.
强关联电子体系具有多序参量耦合且极易受到外场高效调控的特性.钴氧化物(LaCoO3)是一类典型的多铁性(兼具铁弹性和铁磁性)氧化物材料,受到了研究者们广泛和深入的研究.过去,针对钴氧化物的研究都集中于应力作用下的铁弹性相变和结构调控方面.近年来,研究人员新奇地发现钴氧化物薄膜在张应力作用下发生顺磁到铁磁相转变,但其根源一直存在较大争议.部分实验证据表明应力将会导致钴离子价态降低产生自旋态转变,而另一些研究者认为应力诱导的纳米畴结构会呈现高自旋态的长程有序排列,才是钴氧化物薄膜铁磁性的主要原因.本综述主要介绍近几年来钴氧化物薄膜和异质结中自旋与晶格之间关联耦合效应的系列进展.在保持钴离子价态不变时,通过薄膜厚度、晶格失配应力、晶体对称性、表面形貌、界面氧离子配位和氧八面体倾转等结构因素诱导钴氧化物薄膜的自旋态可逆转变,从而形成高度可调的宏观磁性.进而,研究者们利用原子级精度可控的薄膜生长技术构筑了单原胞层钴氧化物超晶格,通过高效的结构调控,实现了超薄二维磁性氧化物材料.这些系列进展不仅澄清了强关联电子体系中晶格与自旋等序参量之间的强耦合关系,而且为实现氧化物自旋电子...  相似文献   
3.
单羟基醇具有其他液体通常所不具备的Debye弛豫过程,随着研究工作的开展,一些与之相关的新现象和新问题也逐渐被发现,深化了对物质结构和动力学的认知.为了进一步研究Debye弛豫过程的动力学及其受分子构成影响的情况,本文通过介电谱方法对3种无支链无侧基伯醇中的Debye弛豫进行测量与分析,揭示了该过程的一些变化规律.在正丙醇、正丁醇和正辛醇这3种伯醇中Debye过程的特征温度、VogelFulcher-Tammann (VFT)温度的倒数和强度参量以及弛豫单元在高温极限下的激活能和固有振动频率的对数几乎都随分子内碳原子数的增加而线性增加.但是VFT温度变化不大,具有一致性,表明这3种单羟基醇中Debye过程的弛豫单元应该相同,进一步验证了Debye弛豫来源于氢键分子链中羟基的观点.将样品的沸点和熔点等信息与上述激活能的变化进行对比,表明氢键作用与分子之间的整体相互作用具有正相关性.另外,将强度参量的变化情况与相关理论进行结合,给出了研究液体脆性的一个可能视角;三者弛豫过程与乙醇结果的对比,显示出Debye弛豫与α弛豫的分离程度会受到分子链长的影响,也为Debye弛豫的研究提供了切入点.这...  相似文献   
4.
作为一种过渡金属氧化物,锰氧化物以其多晶型、储/释氧能力强、蕴含丰富氧物种、结构缺陷可控等优点被广泛应用于苯系物的热催化氧化。其中,具有众多特性的氧空位能有效促进苯系物的完全催化氧化,因而成为各界研究的焦点。我们综述了常见的氧空位构建方法及表征技术,并总结了在苯系物催化氧化过程中,锰氧化物中氧空位的几种重要作用机制对催化活性和抗水性能的积极影响。最后文章对氧空位构建新方法、形成机理、具体过程及其在锰氧化物热催化氧化苯系物领域中的应用进行了总结和展望。  相似文献   
5.
硅蛋白的发现导致了生物无机化学范式的转变,因为它是第一个可以催化无机单体合成无机聚合物分子的酶。分子生物学,生物化学和细胞生物学数据证实,两种硅质海绵动物,包括寻常海绵和六放海绵,它们的骨针都是由硅蛋白/酶催化合成的。这种酶不仅存在于硅质海绵骨针内部,而且也存在于硅质海绵骨针表面。在硅质海绵骨针生长过程中,它催化生物二氧化硅的合成而构建硅薄层,一层层的硅薄层逐步沉积从而形成硅质海绵骨针。寻常海绵动物Suberites domuncula体外实验获得的硅蛋白活性数据(催化生物二氧化硅的形成)反映了体内骨针生长所需的生物二氧化硅量。本文最后总结了在寻常海绵动物骨针生长和成熟过程中出现的生物熔合现象,即内部的硅薄层"烧结"在一起形成致密的硅棒。强壮的和坚硬的生物二氧化硅骨架的形成需要经历一个硬化过程,这个过程由海绵动物排水通道表面的细胞膜控制,排除生物二氧化硅缩聚反应过程中释放出的水分而使材料固化。  相似文献   
6.
本文制备了三种在1,4-bis[2-(4-pyridyl)ethenyl]-benzene(bp-eb)上接枝不同烷基链长度的热致变色材料DC8、DC12、DC16. 在365 nm激发光下,随着温度升高,它们呈现出荧光颜色的改变,这种改变来自于晶体态与无定形态之间的转变. 此外,DC16也呈现出光致变色的性质. 通过差示扫描量热法测试得到的相转变温度高于实验过程中荧光颜色改变时的温度. 因此,这种变色行为来自于光与热共同作用的结果. 乙醇可以使粉末变回起始的晶体状态,从而使荧光颜色恢复,实现热致变色行为的可逆. 本研究对理解热致变色分子的结构-性质关系,指导热致变色分子设计具有重要意义.  相似文献   
7.
层状过渡金属化合物BaMn2Bi2与“122”型铁基超导材料BaFe2As2具有十分相似的特征,不仅具有相同的四方ThCr2Si2晶体结构,而且都是反铁磁基态.我们采用助溶剂法制备了BaMn2Bi2的高质量大尺寸单晶样品,通过X射线衍射、能谱分析系统、综合物性测量系统表征了该单晶样品的晶体结构、化学成分和电输运性质,并对其电输运性质的各向异性进行了系统的研究.研究发现:零磁场下BaMn2Bi2的面内电阻率和面间电阻率从300 K到100 K随温度下降而下降,表现出坏金属行为;但是100 K以下随温度下降而上升,表现出半导体行为,其激发能约为2.5~3 meV.施加9T磁场后,100 K以上两个方向的磁阻仅为5;左右,而100 K以下两个方向磁阻都逐渐下降,直到1.8K达到-18;左右.无论是否施加磁场,BaMn2Bi2的面内电阻率和面间电阻率都没有表现出明显的各向异性.  相似文献   
8.
利用非平衡态Monte Carlo模拟方法,研究了剪切对ABA遥爪型三嵌段共聚物在选择性溶剂中溶胶-凝胶转变行为的影响.结果表明,一定程度的剪切流场会促使溶胶-凝胶转变浓度向低浓度方向移动.计算了剪切下体系的结构信息,包括链构型的分布、胶束的聚集数和数目、胶束簇的聚集数和数目、单链的平均尺寸和拉伸程度.结果表明,剪切使分子链沿着剪切方向被拉伸,导致分子链的尺寸变大,使体系中的分子链有更大几率可以形成桥型链,进而促进体系发生溶胶-凝胶转变.  相似文献   
9.
吴轶鹏  韩慧磊  孙影 《化学教育》2020,41(17):105-111
国内外有关化学学科的相异构想研究主要包括对学生相异构想进行诊断及其原因分析,以及开发有效的教学模式或策略对学生相异构想进行概念转变。通过对国内外相关研究现状的分析,为相异构想的后续研究提供思路。  相似文献   
10.
玻璃与玻璃态的应用极其广泛。玻璃化转变是一种典型的非晶液-固转变,当转变发生时体系的结构并没有明显变化,因而我们无法将其归类于已有的任何相变类型。作为凝聚态物理和软物质领域的核心问题,玻璃化转变的研究已有近70年的历史。然而,时至今日,人们还是无法回答玻璃态的本质是什么这一基本问题。本文简述了玻璃态的性质以及伴随玻璃化转变发生的一些基本物理现象,并总结了半个世纪以来一些与玻璃化转变相关的理论,以期加深读者对玻璃及玻璃化转变的认识。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号