首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5848篇
  免费   1085篇
  国内免费   678篇
化学   1680篇
晶体学   78篇
力学   972篇
综合类   90篇
数学   1562篇
物理学   3229篇
  2024年   36篇
  2023年   128篇
  2022年   133篇
  2021年   156篇
  2020年   139篇
  2019年   152篇
  2018年   95篇
  2017年   138篇
  2016年   149篇
  2015年   184篇
  2014年   328篇
  2013年   324篇
  2012年   321篇
  2011年   408篇
  2010年   326篇
  2009年   403篇
  2008年   440篇
  2007年   353篇
  2006年   343篇
  2005年   333篇
  2004年   307篇
  2003年   282篇
  2002年   263篇
  2001年   250篇
  2000年   220篇
  1999年   199篇
  1998年   160篇
  1997年   181篇
  1996年   145篇
  1995年   107篇
  1994年   141篇
  1993年   98篇
  1992年   90篇
  1991年   109篇
  1990年   70篇
  1989年   57篇
  1988年   16篇
  1987年   16篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1980年   1篇
排序方式: 共有7611条查询结果,搜索用时 31 毫秒
1.
本文基于实测的热力湍流探空数据,使用WR95方法识别低云的垂直结构,对比分析了低云与晴空天气下大气折射率结构参数Cn~2、气象条件和大气稳定度的平均统计结果.结果表明,低层薄云对Cn~2起伏变化的影响微乎甚微,仅仅表现出轻微增大的趋势,云底Cn~2相对于晴空天气平均增大1.6倍,云顶之上最大程度增大2.5倍.低层中厚云在云顶处Cn~2相对于晴空天气增大了3.80—6.61倍,且云顶区域Cn~2增大的幅度大于云底区域.云底区域大气湍流特性受到地面热力驱动与低云冷却的联合作用,沉降气流与地面向上气流发生了耦合,增强了风切变,Cn~2在这一高度附近也出现了增强.综合对比晴空和有云天气Cn~2大小可知,云对Cn~2的增强效应大致在10–16量级.一方面,风切变在云顶处或者云顶之上达到最大值;另一方面,因为云顶短波辐射增温和长波辐射冷却的共同作用,云顶之上会形成不同厚度的逆温层,致使云顶处位温变化率急剧增大,Brunt-V...  相似文献   
2.
人教版初中化学首个探究性实验"蜡烛及其燃烧"明确指出火焰的划分方法,但在实际教学中肉眼观察法和火柴梗燃烧法对蜡烛火焰的划分存在一定的局限性。采用文献研究法和实验验证法分析其局限性的成因——燃料的析炭能力强弱、材料结构的不同等,并提出相应的改进建议。  相似文献   
3.
4.
5.
郑晓静  王国华 《力学进展》2020,50(1):202001
高雷诺数壁湍流(high Reynolds number wall-bounded turbulence,HRNWT)是目前湍流科学研究的一个热点也是一个难点,对其现象、规律及机制的认知不足,理论体系远未建立而且研究手段受到各种限制.本文基于对HRNWT主要研究手段的介绍,针对HRNWT中的湍流统计量、超大尺度结构(very large scale motions,VLSMs)的尺度和形态以及起源和影响及其与颗粒的相互作用,总结了HRNWT的研究现状和最新进展,特别梳理了近年来本文作者团队在HRNWT特别是高雷诺数颗粒两相壁湍流方面的研究成果,并对HRNWT的进一步研究给出了建议及展望.   相似文献   
6.
为数值求解描述不同物质间相位分离现象的高阶非线性Cahn-Hilliard(C-H)方程,发展了一种基于局部加密纯无网格有限点集法(local refinement finite pointset method,LR-FPM).其构造过程为:1)将C-H方程中四阶导数降阶为两个二阶导数,连续应用基于Taylor展开和加权最小二乘法的FPM离散空间导数;2)对区域进行局部加密和采用五次样条核函数以提高数值精度;3)局部线性方程组求解中准确施加含高阶导数Neumann边值条件.随后,运用LR-FPM求解有解析解的一维/二维C-H方程,分析粒子均匀分布/非均匀分布以及局部粒子加密情况的误差和收敛阶,展示了LR-FPM较网格类算法在非均匀布点情况下的优点.最后,采用LR-FPM对无解析解的一维/二维C-H方程进行了数值预测,并与有限差分结果相比较.数值结果表明,LR-FPM方法具有较高的数值精度和收敛阶,比有限差分法更易数值实现,能够准确展现不同类型材料间相位分离非线性扩散现象随时间的演化过程.  相似文献   
7.
曾赛  杜选民  范威 《应用声学》2020,39(3):482-491
水下对转螺旋桨流致辐射噪声的预报对于水下目标的特征提取和分类识别具有重要意义。由桨叶的旋转引起的湍流场是水下对转螺旋桨流致辐射噪声的源场。分述了水下对转螺旋桨湍流边界层脉动、旋转干涉效应和空化效应引发的水动力噪声机制和研究进展,比较了目前工程应用中的3种对转螺旋桨流致辐射噪声预报方法的特点。在分析对转螺旋桨流致辐射噪声数值预报难点的基础上,综述了对转螺旋桨流致辐射噪声计算方法的研究进展,指出间接数值模拟方法是工程中进行对转螺旋桨流致辐射噪声预报的有效方法。  相似文献   
8.
强光林  杨易  陈阵  谷正气  张勇 《力学学报》2020,52(5):1371-1382
本文将汽车绕流模块化为各典型局部流动,通过常用湍流模型对各典型局部流动进行数值模拟,结果验证了湍流模型对转捩的捕捉能力是准确模拟汽车绕流的关键. 在分析汽车绕流分离及转捩机理的基础上,优化了稳态和瞬态求解方法,改进了湍流模型对转捩的预测能力,进而提高了湍流模型在汽车流场模拟上的精度. 针对汽车绕流的稳态问题,将流线曲率因子及 响应阈值引入 LRN $k$-$\varepsilon $ (low Reynolds number $k$-$\varepsilon $) 模型,获得了一种能够更准确预 测转捩的改进低雷诺数湍流模型 (modified LRN $k$-$\varepsilon $),改善了原模型对湍流耗散率的过强依赖性及全应力发展预测不足等问题;针对汽车绕流瞬态求解,通过分析 RANS/LES 混合湍流模型的构造思想及特点,引入约束大涡模拟方法,结合本文提出的改进的 LRN $k$-$\varepsilon $ 湍流模型,提出了一种能准确捕捉转捩现象 的转捩 LRN CLES 模型. 分别将改进的模型用于某实车外流场和风振噪声仿真中,通过 Ansys Fluent 求解器计算,并将计算结果与常用湍流模型的仿真结果、HD-2 风洞试验结果和实车道路实验结果进行对比,表明改进后的湍流模型能够更准确模拟复杂实车的稳态和瞬态特性,为汽车气动特性的研究提供了可靠理论依据及有效数值解决方法.   相似文献   
9.
周泽友 《力学学报》2020,52(4):1035-1044
湍流场中二阶速度加速度结构函数 (velocity-acceleration structure function, VASF) 被认为与尺度间能量或者拟涡能的传递相关,其正负表明传递的方向. 三维湍流中,能量从大尺度向 小尺度传递,VASF 为负. 在二维湍流中,能量反向传递到大尺度,拟涡能正向传递到小尺度,因此理论上 VASF 无论在反向能量级串区还是在正向拟 涡能级串区均为正. 然而,相对于三维湍流中 VASF 的充分研究,二维湍流中 VASF 的正负性迄今尚无实验或数值模拟数据验证. 本文通过三维二维湍流中普适的公式推导,指出在空间非均匀湍流场中,VASF 除了尺度间传递,还受到非均匀项的影响. 一种常见的空间非均匀湍流场是在实验研究中常用的风洞或水洞中,湍流发生装置 (如栅格) 后的湍流. 该流场中,湍流强度随下游位置增大而逐渐衰减,这种衰减则带来空间上的非均匀性. 本文在基于竖直流动皂膜的二维衰减湍流场中,利用拉格朗日粒子追踪法测得在拟涡能级串区的 VASF,并分析各部分的影响. 结果表明,虽然尺度间传递项为正值,但由于衰减带来的非均匀项为负值,使得 VASF 的值为负,使之失去了表征拟涡能传递方向的意义. 因此,在类似风洞、水洞、水槽等衰减流场中对 VASF 的讨论不应忽略非均匀项. 最后对与 VASF 密切相关的弥散过程进行分析,发现后期弥散过程变慢是由于负的 VASF 导致.   相似文献   
10.
汪已琳  任哲  赵志然  张威 《人工晶体学报》2018,47(12):2659-2662
本文对减压扩散机理及高阻密栅技术作了详细的分析,并就设备及工艺方面的关键技术进行了阐述,最后对减压扩散高方阻工艺及密栅匹配技术电池效率进行了对比分析,有以下结论:(1)减压扩散在工艺优化后,方阻均匀性得到大幅改善,达到3;以内.(2)减压扩散电池效率完全可达到常规产线的水平,且在高阻密栅方面更有优势,可有效提升太阳电池效率.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号