首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
魏锐  黄婷  杨晶晶 《化学教育》2012,33(9):119-122
蜡烛燃烧实验蕴含着许多物理和化学原理。通过文献梳理和实验探究,探讨了蜡烛等物质燃烧时为什么会形成火焰、火焰的形状、温度、颜色和成分等问题,为中学化学教学提供参考。  相似文献   

2.
魏锐  黄婷  杨晶晶 《化学教育》2012,33(9):115-118
对蜡烛在微重力条件下是否能够燃烧有不同的预测结果,从对流、扩散和反应引发3个角度讨论了预测微重力状态下蜡烛能否燃烧的思路。引用美国航空航天局、中国科学院和哈尔滨工程大学等的实验研究证据,说明在微重力环境中蜡烛可以持续燃烧,以及蜡烛微重力燃烧时火焰的形状、颜色、大小和温度等特点。介绍使用摄像机实际拍摄蜡烛微重力燃烧现象的方法。  相似文献   

3.
“蜡烛刚熄灭时白烟的点燃”实验新方法   总被引:2,自引:2,他引:0  
分析义务教育课程标准实验教科书化学教材,有关验证"蜡烛燃烧产生白烟"的实验设计颇耐人寻味.人教版第12页(上册)要求"点燃蜡烛刚熄灭时的白烟"(如图1所示),沪教版第11页(上册)说明"从蜡烛火焰中,可以引出一缕‘白烟'"(如图2所示).实际操作时,实验效果很不理想.前者因白烟的散逸,很难点燃,后者引出白烟倒没问题,但点燃时火焰不能连续.虽然已有老师提出通过改制蜡烛的方法点燃白烟[1],然而我们的问题是,普通蜡烛产生的白烟能够被持续点燃吗?答案应该是肯定的.  相似文献   

4.
氧体积分数对炭黑燃烧特性影响的热天平研究   总被引:3,自引:0,他引:3  
利用热天平对天然气扩散火焰中生成的炭黑在不同氧体积分数下(21%、15%、10%和5%)的燃烧特性进行了研究,选用蜡烛炭黑、4种工业炭黑以及无烟煤焦炭作为对比。基于试验结果确定了燃烧特性参数,并分析了燃烧特性。天然气扩散火焰中生成的炭黑明显早于其他试样着火燃烧,着火温度在所有试样中最低,氧体积分数为21%下为483.0℃,比焦炭约低114℃,比蜡烛炭黑低近127.8℃。自制天然气炭黑可燃指数比焦炭低,着火后前期燃烧反应能力较弱。随着氧体积分数的降低,各试样着火温度在50℃内变化。比较各试样的燃尽特性可知自制天然气炭黑在不同燃尽率下的相对燃尽时间最长,氧体积分数为21%下完全燃尽为6.03min,比焦炭长21.3%。蜡烛炭黑相对燃尽时间也较长。随着氧体积分数降低,各试样燃尽时间都延长,尤其是自制天然气炭黑,氧体积分数从21%降到5%,相对燃尽时间延长2.97倍,氧体积分数降低明显延长其燃尽过程。  相似文献   

5.
火焰内焰、外焰和焰心的划分是人教版初三化学中的内容,但一直以来对于火焰的划分没有明确统一的标准。由此采用文献研究法与实验探究法总结了几种火焰划分的方法,分别为肉眼观察法、定性探究法、定量探究法(即手持仪器接触式测温法与非接触式比色测温法)以及光谱分析法,旨在丰富火焰焰层划分的研究内容,为科学、有效地进行火焰探究性实验提供参考。  相似文献   

6.
基于对氢气燃烧火焰颜色的不同解释,从焰色反应、火焰温度、气体流速等3方面影响因素设计方案进行实验研究,得出影响氢气火焰颜色的主要因素是气流速度、火焰温度及药品的焰色反应。巧用球形干燥管既控制气流速度、又控制火焰温度的特点,设计出可以观察到氢气燃烧火焰呈明显蓝色的演示装置。用可现取的仪器药品、可执行的实验方案、可重现的实验现象、可检验的实验结果,验证了教材中关于氢气燃烧火焰颜色的论述,突破了实际操作中氢气燃烧颜色不易观察的局限。  相似文献   

7.
针对酒精灯火焰呈黄色的解释争议进行研究,以降低环境温度和减少氧气浓度为方向,设计了可观察环境温度变化对含氢燃料火焰颜色影响的仪器。对乙醇、丁烷、蜡烛等燃烧火焰进行降温测试,发现含氢燃料正常燃烧火焰颜色一般为黄色、降低环境温度后变为极淡的蓝色(光亮条件下)的规律,证明了燃烧过程中水分子处于激发态是导致火焰颜色由蓝色变为黄色的重要原因,钠元素的焰色反应不是酒精灯火焰呈黄色的唯一原因。对丁烷喷枪火焰颜色的降温测试,意外观察到4种疑似氢原子光谱的可见光谱线,为今后寻找该谱线提供了可借鉴的方向。研究过程可作为基于真实情境的研究素材,通过问题的发现、仪器的改进和规律的总结,提高学生运用化学知识解决真实问题的能力,培养学生的核心素养。  相似文献   

8.
针对钠与乙醇反应的实验进行探究与改进。探索出反应试剂的最佳用量,可在较长时间内观察到氢气燃烧时的淡蓝色火焰;通过实验条件模拟、利用酒精检测仪检测,探究乙醇蒸气燃烧的条件,得出采用最佳试剂用量进行实验时乙醇蒸气对氢气的燃烧并未产生影响。实验改进后,在普通可见光下,也可明显地观察到氢气燃烧时的淡蓝色火焰。  相似文献   

9.
贾琼  宋乃忠  马玖彤 《化学教育》2018,39(22):46-48
设计了一个综合实验——磁性金属有机骨架材料的合成及对铅的吸附。先合成四氧化三铁,再通过氨基修饰制备磁性金属有机骨架吸附材料。考察了此材料对铅的吸附性能,铅的浓度用火焰原子吸收光谱法测定。通过实验加深了学生对物理化学课程中吸附动力学等相关内容的理解,同时巩固了学生对仪器分析课程中的原子吸收光谱法的相关内容的掌握。  相似文献   

10.
用透明的圆柱形去底塑料瓶、90°弯尾球形干燥管、铁架台等组装实验装置改进了蜡烛燃烧产物检验的实验,可以很快看到塑料瓶内壁空干燥管内有水雾、石灰水变浑浊,说明蜡烛燃烧的产物有水和二氧化碳。  相似文献   

11.
In order to explore the structure mode of intumescent flame retardants (IFRs) with higher efficiency, IFR particles with joint‐aggregation structure (@IFR) were obtained through the treatment of ammonium polyphosphate (APP) and a charring agent (PT‐Cluster) in their aqueous solution. Then, the joint‐aggregation IFR effect was researched using its application in polypropylene. In case of 20 wt% IFR loading, the limiting oxygen index (LOI) value of @IFR/PP was 1.1% higher than that of 15APP/5PT‐Cluster/PP mixture, and a 1.6 mm‐thick @IFR/PP composite passed the UL 94 V‐2 rating test, while 15APP/5PT‐Cluster/PP demonstrated no flame‐retardant rating in UL 94 vertical burning tests. In a cone calorimeter test, @IFR also had a better inhibition effect on heat release. The average heat release rate (av‐HRR) value during 0 to 120 seconds of @IFR/PP was only 41 kW m?2, which was 33.9% lower than that of the 15APP/5PT‐Cluster/PP. Furthermore, the peak heat release rate (pk‐HRR) of @IFR/PP was 20.5% lower than that of 15APP/5PT‐Cluster/PP, and the time to pk‐HRR of @IFR/PP was 710 seconds, while that of 15APP/5PT‐Cluster/PP was 580 seconds. The better inhibition effect on HRR and the delay of time to pk‐HRR were caused by the joint‐aggregated structure of @IFR, which can rapidly react to form stable and efficient char layers. This kind of join‐aggregation IFR effect has great significance in suppressing the spread of fire in reality. In addition, @IFR also increased the mechanical properties of PP composites slightly compared with the APP/PT‐Cluster mixture.  相似文献   

12.
The economic and environmentally friendly flame‐retardant compound, tetramethyl (6‐chloro‐1,3,5‐triazine‐2,4‐diyl)bis(oxy)bis(methylene) diphosphonate ( CN‐1 ), was synthesized by a simple two‐step procedure from dimethyl phosphate, and its chemical structure was characterized by 1H, 13C, and 31P nuclear magnetic resonance and gas chromatography mass spectroscopy. Using the traditional pad–dry–cure method, we obtained several different add‐ons (wt%) by treating cotton twill fabric with flame retardant ( CN‐1 ). Thermogravimetric analysis, in an air and nitrogen atmosphere, of the modified cotton showed that decomposition occurred ~230°C with 16% residue weight char yield at 600°C, indicating high thermal stability for all treated levels. Limiting oxygen index (LOI) and the vertical flammability test were employed to determine the effectiveness of the flame‐retardant treatments on the fabrics. LOI values increased from ~18 vol% oxygen in nitrogen for untreated fabric to maximum of 34 vol% for the highest treatment level. Fabrics with higher levels of flame retardant also easily passed the vertical flammability test. Furthermore, Fourier transform infrared and scanning electron microscopy were utilized to characterize the chemical structure as well as the surface morphology of the flame‐retardant treated twill fabrics, including char area and the edge between unburned fabric and char area. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
The sustainable resveratrol‐based phthalonitrile was used in the preparation of E‐glass fiber‐reinforced phthalonitrile composite panels fabricated by hot pressed prepreg consolidation with bis[4‐(3‐aminophenoxy)phenyl]sulfone (m‐BAPS) as the curing additive. This amorphous monomer exhibited excellent viscosities at temperatures below 200 °C, which is applicable to standard processing conditions. Rheometric measurements were used to evaluate the cure of the composite as a function of the postcure conditions. The composite retains >95% of its room temperature storage modulus up to 450 °C based on these postcuring parameters. More importantly, flammability performance of the composite—which was determined in terms of ignitability, heat release, and mass loss rate—excels over other state‐of‐the‐art polymer/glass composites. Even under the most extreme heat fluxes (e.g., 100 kW⋅m−2), the composite performs exceptionally well suggesting that resveratrol‐based phthalonitrile composites can be used in fire‐resistant applications. Published 2018. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1128–1132  相似文献   

14.
Various analogos of phosphonic acid, phosphinic acid, and CH3? P(O) group containing organo‐phosphorus compounds were synthesized as model compounds to investigate the effects of P content and the structure of flame retardant (FR) on their fire retarding performances of acrylonitrile–butadiene–styrene (ABS) and ethylene–vinyl acetate (EVA) copolymer. The success of synthesis was confirmed by 1H‐ and 31P‐NMR. The flame retarding efficiencies were evaluated by a UL‐94 vertical test method. Thermogravimetric analysis results reveal that all the mixtures of FRs with ABS or EVA exhibit no or very little charred residues at 600°C under inert atmosphere condition, indicating that all FRs work in the gas phase rather than in the condensed phase for both ABS and EVA. The fire retarding efficiency of FR depends not only on the P content in FR but also on the nature of its structure. UL‐94 results show that P FRs with ? CH3 group attached to the P atom exhibits the best fire retarding performance on both ABS and EVA. It was found that at least 4 wt% P in the formulation is required to show self‐extinguishing ability for both ABS and EVA when P FRs having ? CH3 group are employed. The fire retarding efficiency of P FRs with different attached group is in order of: ? CH3 > ? C6H5 > ? OH > ? H. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
A novel phosphorus‐containing aralkyl novolac (Ar‐DOPO‐N) was prepared from the reaction of 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) first with terephthaldicarboxaldehyde and subsequently with phenol. The chemical structures of the synthesized compounds were characterized with Fourier transform infrared, 1H and 31P NMR, and elemental analysis. Ar‐DOPO‐N blended with phenol formaldehyde novolac was used as a curing agent for o‐cresol formaldehyde novolac epoxy, resulting in cured epoxy resins with various phosphorus contents. The epoxy resins exhibited high glass‐transition temperatures (159–177 °C), good thermal stability (>320 °C), and retardation on thermal degradation rates. High char yields and high limited oxygen indices (26–32.5) were observed, indicating the resins' good flame retardance. Using a melamine‐modified phenol formaldehyde novolac to replace phenol formaldehyde novolac in the curing composition further enhanced the cured epoxy resins' glass‐transition temperatures (160–186 °C) and limited oxygen index values (28–33.5). © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2329–2339, 2002  相似文献   

16.
A new diepoxide and a new diamine, both bearing bis‐(9,10‐dihydro‐9‐oxa‐10‐oxide‐10‐phosphaphenanthrene‐10‐yl‐)‐substituted methylene linkages, were prepared through the reaction of 9,10‐dihydro‐oxa‐10‐phosphaphenanthrene‐10‐oxide with benzophenone derivatives via a simple addition reaction followed by a dehydration reaction. These two compounds were used as monomers for preparing cured epoxy resins with high phosphorus contents. The resultant epoxy resins showed high glass‐transition temperatures (between 131 and 196 °C). All of the cured epoxy resins exhibited high thermal stability, with 5% weight loss temperatures over 316 °C, and excellent flame retardancy, with limited oxygen index values of 37–50. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 359–368, 2002  相似文献   

17.
Phosphorus‐containing epoxy systems were prepared from isobutylbis(hydroxypropyl)phosphine oxide (IHPO) and diglycidyl ether of bisphenol A (DGEBA). Diethyl‐N,N‐bis(2‐hydroxyethyl) aminomethyl phosphonate (Fyrol 6) could not be incorporated into the epoxy backbone by a reaction with either epichlorohydrin or DGEBA because intramolecular cyclization took place. The curing behavior of the IHPO–DGEBA prepolymer with two primary amines was studied, and materials with moderate glass‐transition temperatures were obtained. V‐0 materials were obtained when the resins were tested for ignition resistance with the UL‐94 test. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3510–3515, 2005  相似文献   

18.
We reveal a route for the preparation of phosphinated bisphenol, 1,1‐bis(4‐hydroxyphenyl)‐1‐(6‐oxido‐6H‐dibenz <c,e> <1,2> oxaphosphorin‐6‐yl)ethane (2) , via a one‐pot reaction of 1,1,1‐tris(4‐hydroxyphenyl)ethane and 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene 10‐oxide (DOPO) in the catalysis of p‐toluenesulfonic acid. A two‐step reaction mechanism, acid‐fragmentation of 1,1,1‐tris(4‐hydroxyphenyl)ethane followed by nucleophilic addition of DOPO, is proposed for the synthesis. Based on (2) , a dicyanate ester derivative, 1,1‐bis(4‐cyanatophenyl)‐1‐(6‐oxido‐6H‐dibenz <c,e> <1,2> oxaphosphorin‐6‐yl)ethane (3) was prepared and co‐cured with a commercially available dicyanate ester, the dicyanate ester of bisphenol A (BACY). Experimental data show that incorporating (3) into BACY enhances the flame retardancy and dielectric properties with little penalty to the thermal properties. A thermoset with Tg 274 °C, coefficient of thermal expansion (CTE) 49 ppm/°C, Dk 3.04 (1 GHz), Td (5%,) N2: 435 °C, air: 424 °C, and UL‐94 V‐0 rating can be achieved via this approach. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

19.
Three aromatic diamine‐based, phosphinated benzoxazines ( 7–9 ) were prepared from three typical aromatic diamines—4,4′‐diamino diphenyl methane ( 1 ), 4,4′‐diamino diphenyl sulfone ( 2 ), and 4,4′‐diamino diphenyl ether ( 3 ) by a one‐pot procedure. To clarify the reaction mechanism, a two‐pot procedure was applied, in which the reaction intermediates ( 4–6 ) were isolated for characterization. The structures of intermediates and benzoxazines were confirmed by high resolution mass, IR, and 1D and 2D‐NMR spectra. In addition to self‐polymerization, ( 7–9 ) were copolymerized with cresol novolac epoxy (CNE). After curing, the homopolymers of P( 7–9 ) are brittle while the copolymers of ( 7–9 )/CNE are tough. Dynamic mechanical analysis shows the Tgs of ( 7–9 )/CNE copolymers are 187, 190, and 171 °C, respectively. Thermal mechanical analysis shows the CTEs of ( 7–9 )/CNE copolymers are 46, 38, and 46 ppm, respectively. All the ( 7–9 )/CNE copolymers belong to an UL‐94 V‐0 grade, demonstrating good flame retardancy. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

20.
Poly (diallyldimethylammonium chloride) (PDDA) and ammonium polyphosphate (APP) deionized chloride ions and ammonium ions by ionizing in aqueous solution respectively, then combined to form poly (diallyldimethylammonium) and polyphosphate (PAPP) polyelectrolyte complexes as an all‐in‐one flame retardant for polypropylene and its composites were characterized by Fourier transform infrared (FTIR) spectroscopy and X‐ray photoelectron spectroscopy. One flame retardant system composed of PAPP and PP, the other flame retardant system composed of PAPP, Polyamide‐6 (PA6) and PP were tested by limiting oxygen index (LOI), UL‐94, cone calorimeter tests and thermogravimetric analysis (TGA) and compared with pure PP. The results showed that the LOI value of PP/PAPP composite can reach 27.5%, and UL‐94 V‐2 rating can be reached at 25 wt% PAPP loading. Meanwhile the cone calorimetry results displayed that the peak heat release rate (PHRR) and total heat release (THR) were reduced up to 69.3% and 22.5%, respectively, compared with those of pure PP. After adding 5 wt% PA6, the carbon source missing due to the early PAPP decomposition can be made up, and PHRR and THR can be further reduced slightly. The flame retardant mechanism of PAPP was studied by FTIR spectroscopy and X‐ray photoelectron spectroscopy. Six‐membered ring of C─N containing conjugate double bonds, cross‐linked phosphate structure formed stable, intumescent, compact char layer which greatly improved the flame retardancy of PP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号