首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  国内免费   64篇
化学   14篇
晶体学   1篇
力学   60篇
  2024年   1篇
  2023年   1篇
  2022年   8篇
  2021年   2篇
  2019年   3篇
  2017年   6篇
  2016年   5篇
  2014年   4篇
  2013年   1篇
  2012年   6篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   4篇
  2006年   3篇
  2005年   1篇
  2004年   5篇
  2003年   1篇
  2002年   2篇
  2001年   2篇
  1999年   3篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1990年   1篇
排序方式: 共有75条查询结果,搜索用时 31 毫秒
1.
液晶润滑添加剂的减摩作用机理研究   总被引:3,自引:0,他引:3  
卢颂峰  郑杰 《摩擦学学报》1995,15(3):257-262
液晶润滑添加剂具有优良的减摩性能,但在已有的文献报道中涉及其减摩机理的研究内容却还很少。因此,利用向列型液晶材料已氧基苯甲酸和正辛基苯甲酸作为HU-20汽轮机油的添加剂,在给定的压力、速度和温度条件下于Falex试验机上进行了液晶的减摩性能试验研究,并且用X射线衍射、俄歇电子能谱和扫描电子显微镜等技术,对溶解于矿物油中的液晶结构、磨损表层的元素组成及其表面形貌作了观察、分析与研究,在此基础上又对液  相似文献   
2.
硅相锌基复合材料减摩抗磨性能的研究   总被引:4,自引:1,他引:4  
为了改善锌铝合金在干摩擦条件下的耐磨性能,拓宽它的工程应用范围,在其中添加质量分数为10%的Si,同时以质量分数0.1%~0.3%的P-Cu对硅相进行变质处理,研制出硅相增强锌基复合材料,并且对这种材料的减摩抗磨性能进行了试验研究.结果表明:硅相锌基复合材料分别在干摩擦和20#机械油滴油润滑条件下的减摩抗磨性能良好.扫描电子显微镜观察发现,硅相锌基复合材料中的硅相经变质处理得以细化和分布均匀化,这对改善锌铝合金的综合性能具有重要作用;由于硅相的硬度远比基体的高,在滑动摩擦过程中可以起支撑作用,减少偶件与基体的直接接触而降低摩擦磨损  相似文献   
3.
二烷基二硫代磷酸镧与硼酸酯的协同减摩抗磨作用机理   总被引:2,自引:0,他引:2  
用四球摩擦磨损试验机考察了油溶性二烷基二硫代磷酸镧(LaDDP)和有机硼酸酯(OB)的减摩抗磨性能,探讨了LaDPP与有机硼酸酯的协同减摩抗磨作用及其协同摩擦化学反应机理;采用X射线光电子能谱仪和俄歇电子能谱仪对比分析了磨斑表面典型元素组成、化学状态和深度分布。结果表明,LaDDP和有机硼酸酯具有优良的减摩抗磨性能,且二者具有优异的协同减摩抗磨作用,其主要原因在于稀土元素镧促进了有机硼酸酯的分解及硼的渗透,生成了由La、La2O3、B2O3、FeS、硫酸盐和磷酸盐等组成的边界润滑膜,形成了镧与硼的渗透层。  相似文献   
4.
蓖麻油聚氧乙烯醚水基润滑液摩擦学特性研究   总被引:5,自引:4,他引:1  
本文以蓖麻油聚氧乙烯醚水基润滑液为研究对象,分别使用润滑膜厚度测量仪、微摩擦试验机和四球摩擦试验机对其成膜特性、摩擦磨损特性和抗磨极压特性进行了系统的研究,并用扫描电子显微镜和能量色散光谱仪对摩擦磨损机制进行了分析。结果表明:蓖麻油聚氧乙烯醚提高了纯水的成膜能力,能够在钢-铝摩擦副形成有效的润滑膜,起到良好的减摩抗磨效果。随着浓度的增大,对钢-铝摩擦副的减摩抗磨性能和四球摩擦试验的抗磨极压性能都得到了提高。  相似文献   
5.
为了提高Ti6Al4V合金的耐磨减摩性能,在其表面利用激光熔覆技术制备出两种不同配比的Ti3SiC2/Ni60复合涂层,分别是5%Ti3SiC2+Ni60(N1)和10%Ti3SiC2+Ni60(N2)(均为质量分数),研究了这两种涂层在室温、300和600 ℃下的微观组织、显微硬度、摩擦学性能表现及相关磨损机理. 结果表明:涂层主要由硬质相TiC/TiB/TixNiy,γ-Ni固溶体连续相和润滑相Ti3SiC2组成. N1、N2涂层的显微硬度均为基体(350HV0.5)的3倍左右,分别为1 101.90HV0.5 和1 037.23HV0.5 ,在室温、300和600 ℃下的摩擦系数分别为0.39、0.35、0.30和0.41、0.45、0.44,均小于基体的摩擦系数(0.51、0.49、0.47). N1、N2涂层在室温、300和600 ℃下的磨损率分别为3.07×10?5、1.47×10?5、0.77×10?5 mm3/(N·m)和1.45×10?5、0.96×10?5、0.62×10?5 mm3/(N·m),均远小于基体[35.96×10?5、25.99×10?5、15.18×10?5mm3/(N·m)]. 在本文中Ti3SiC2提高了Ti6Al4V合金的耐磨减摩性能,使得N1涂层表现出更好的减摩性能,N2涂层表现出更好的耐磨性能. 室温下,磨粒磨损、塑性变形以及轻微的黏着磨损为两种涂层的主要磨损机理;300 ℃时,塑性变形、氧化磨损和黏着磨损是N1涂层的对应机理,600 ℃时出现了三体磨粒磨损;在300和600 ℃时,黏着磨损、氧化磨损及磨粒磨损为N2涂层的主要磨损机理.   相似文献   
6.
针对恶劣提升工况下润滑失效导致的提升钢丝绳内部钢丝摩擦磨损严重的问题,开展改性氧化石墨烯润滑油减摩特性研究. 首先,制备十八胺官能化氧化石墨烯(ODA-GO)及其水合肼还原材料(ODA-rGO),分析其化学结构、表面形貌、片层间距和缺陷,探究其在钢丝绳润滑油IRIS中的分散性;接着,用四球机评价改性润滑油的减摩抗磨性能并研究其润滑机理;最后,评判ODA-GO改性油对钢丝减摩的改进效果. 结果表明:ODA通过酰胺化反应和亲核取代反应接枝在GO表面,ODA-GO拥有高接枝密度的十八烷基链,并在IRIS中分散性较好,ODA-rGO则相反,但在最优添加量下ODA-rGO的抗磨减摩性优于ODA-GO;改性石墨烯基材料会附着在摩擦接触表面,并填补已损伤区域,从而减少磨损;ODA-GO改性油使钢丝间摩擦系数降低10%,疲劳磨损显著降低.   相似文献   
7.
固体润滑可有效降低摩擦系数和磨损率,大大延长基材使用寿命,已成为工业领域应用于低速、重载和高低温等工况下机械运动件摩擦副的关键技术之一。高分子固体润滑替代或者配合流体润滑,利用高分子粉末、薄膜或复合材料避免金属间的直接接触,形成低摩擦润滑介质实现减摩耐磨。本文概述了粘结固体润滑涂层(BSLCs)、固体润滑块(SSLs)、固体润滑膏(SLPs)以及自润滑复合材料(SLCs)四类高分子固体润滑材料(PSLMs)的研究进展,着重论述以水性环氧(WEP)、水性聚氨酯(WPU)、水性聚酰胺酰亚胺(WPAI)为粘结剂的水性粘结固体润滑涂层研究现状。最后,结合当前研发现状以及固体润滑技术在工业应用中的短板,展望了高分子固体润滑材料未来发展趋势。  相似文献   
8.
采用层层组装(layer by layer,LBL)方法,以氢键结合方式,将聚乙二醇-b-聚乳酸聚乙醇酸(mPEG-b-PLGA)胶束与聚丙烯酸(PAA)层层交替沉积到硅基底上,分别用接触角测量仪,椭圆偏光测厚仪,X光电子能谱及原子力显微镜等对聚合物胶束自组装薄膜的结构进行了表征,用UMT-2对薄膜的摩擦学特性进行了表征.沉积到基底表面的胶束薄膜能够稳定附着,且具有良好的减摩效果,有望作为导尿管或体内植入器件表面的抗炎、润滑多功能涂层.  相似文献   
9.
利用球磨法将具有纤维束结构的一维纳米凹凸棒石粉体进行亚微米颗粒化改造.将亚微米颗粒化凹凸棒石粉体分散在长城牌柴油机润滑油CD 15W/40中,利用端面摩擦磨损试验和环-块摩擦磨损试验考察其减摩与自修复性能,并与未添加凹凸棒石粉体的CD 15W/40进行对比.借助XRD、SEM、TEM、EDX和XPS对试验样品进行了分析测试,并探讨了亚微米颗粒化凹凸棒石粉体对45#钢磨损表面的自修复机理.结果表明:高能球磨可以完成将纤维状的凹凸棒石粉体向颗粒状转变的过程,改造后的粉体物相组成为凹凸棒石和石英,粒度属于亚微米级;CD15W/40添加亚微米颗粒化凹凸棒石粉体后,其减摩性提升58.4%;与CD 15W/40润滑表面相比,加入亚微米颗粒化凹凸棒石粉体后,磨损表面光滑,没有明显犁沟、点蚀坑和表面材料塑性变形等现象;磨痕处存在与基体材料不同的修复区域,该修复区域沉积了O、Si、Fe等元素,说明亚微米颗粒化凹凸棒石粉体对45#钢具有优良的减摩性和自修复性能.  相似文献   
10.
橡胶因具有优异的理化性质及独特的力学性能而广泛应用于国防、航空航天、医用、交通、建筑及机械电子等领域,起到减震、缓冲和密封等作用.摩擦学性能是橡胶材料的重要指标之一,然而橡胶自身具有较高的摩擦系数,在一些应用领域,如活塞杆、阀轴(杆)密封、轮胎和水润滑轴承等,因黏连、摩擦生热、机械磨损及磨粒磨损等原因导致性能下降甚至失效.本文中首先综述了橡胶摩擦及磨损理论,随后从橡胶基体改性、橡胶表面处理以及表面织构化3个方面介绍了橡胶减摩抗磨改性方法的研究进展,并对其发展前景进行了展望.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号