首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 343 毫秒
1.
生物油对发动机缸套摩擦学性能的影响   总被引:3,自引:3,他引:0  
以生物油为研究对象,利用乳化技术对生物油进行提质改性,在发动机缸套-活塞环摩擦磨损试验机上考察了提质前后生物油的摩擦学性能.利用表面轮廓仪,扫描电镜与X-射线光电子能谱仪表征了发动机缸套摩擦表面的微观形貌及化学元素状态,探讨了相关的摩擦磨损机理.结果表明:小球藻生物油比稻壳生物油对缸套-活塞环具有更好的减摩抗磨性能;通过乳化提质方法,可以快速提升生物油的性能;生物油的减摩润滑作用归因于油品中的有机物在缸套表面吸附、摩擦挤压及摩擦沉积形成润滑油膜,局部摩擦熔融形成的"微滚珠",以及在摩擦表面生成的Fe2O3及FeOOH氧化膜.此外,小球藻生物油能在摩擦副表面形成含N有机保护膜,这是其具有更好摩擦学性能的重要原因.  相似文献   

2.
对菜籽油进行化学改性制备出硼化改性菜籽油,利用红外光谱仪对其主要官能团进行鉴定,分别采用四球摩擦磨损试验机和SRV摩擦磨损试验机考察了以菜籽油为基础油,以硼化改性菜籽油为添加剂润滑下钢-钢摩擦副和钢.铝摩擦副的抗磨减摩性能,采用扫描电子显微镜观察钢球磨斑表面形貌,通过对铝合金磨痕表面分析,探讨硼化改性菜籽油添加剂的抗磨减摩机制.结果表明:以硼化改性菜籽油为添加剂,以菜籽油为基础油时钢·钢摩擦副和钢.铝摩擦副均具有良好的抗磨减摩性能,其润滑作用机制是由于长链菜籽油分子的载体作用、硼的缺电子性能及其二者的协同作用而在金属摩擦表面形成含硼、氧及碳等元素的表面保护膜.  相似文献   

3.
通过热氧化改性技术,在TC4钛合金表面制备金红石相TiO2氧化膜,利用XRD、拉曼、辉光光谱对氧化膜结构及成分进行了分析,利用摩擦磨损试验机考察了轻载(约1 GPa)与重载(约2 GPa)下热氧化改性前后TC4钛合金样品在5W-30全合成机油润滑下的摩擦学特性,并利用SEM和XPS对其磨损表面形貌及摩擦化学反应膜的化学成分进行了分析. 结果表明:热氧化改性后,TC4钛合金表面形成具有氧化层和扩散层的双层结构. 在油润滑条件下,与未处理的TC4钛合金表面相比,经过热氧化改性的TC4合金表现出优异的减摩抗磨性能,摩擦系数在轻载和重载条件下分别降低了75%和80%,磨损率均下降了近两个数量级. 其原因在于TC4合金热氧化改性后在表面形成的金红石相TiO2氧化膜提高了表面硬度,同时改善了润滑油在表面的润湿,并可促进润滑油中抗磨极压添加剂在接触区表面形成含磷的摩擦化学反应膜,从而极大地提高了摩擦学特性.   相似文献   

4.
以羟基硅酸镁复合矿物粉体作为润滑油添加剂,采用MM-200型环-块摩擦磨损试验机研究了45#钢摩擦副的减摩抗磨性能;采用扫描电子显微镜观察了钢环磨损表面和润滑油所含添加剂颗粒的形貌,采用能谱仪分析了钢环磨损表面成份,采用表面形貌仪测定了钢环磨损表面粗糙度,进而探讨了复合矿物粉体添加剂的抗磨自修复机理.结果表明:羟基硅酸镁复合矿物粉体添加剂对钢-钢摩擦副具有良好的减摩抗磨作用.在基础油(46#机油)润滑条件下,随着载荷的增加,磨损机制由轻微擦伤转变为严重擦伤和黏着磨损.在含添加剂的油润滑条件下,较低载荷下钢环磨损表面发生轻微擦伤,且擦伤程度比基础油润滑下的更轻;而在较高载荷条件下钢环磨损表面非常光滑,呈现轻微的黏着磨损迹象.其原因在于在较低载荷条件下,添加剂在摩擦过程中可发生团聚形成大小不一的球状团聚体,球状团聚体可起到微球轴承的作用,使钢-钢摩擦副由滑动接触状态转变为滚动接触状态,从而显著降低摩擦系数,提高抗磨性能.而在较高载荷下,羟基硅酸镁复合矿物粉体添加剂易在钢-钢摩擦副磨损表面形成自修复抗磨层,从而隔离金属表面的直接接触,起到良好的减摩抗磨作用.  相似文献   

5.
采用表面活性剂十二烷基苯磺酸钠对LB-2000植物润滑油进行改性,获得了适用于静电喷雾润滑的植物润滑油.用傅立叶变换红外光谱仪表征了荷电前后润滑油的分子结构,分析了其荷电及理化性能.在四球摩擦磨损试验机上考察了静电喷雾润滑条件下润滑油的摩擦学性能,用光学显微镜和X射线光电子能谱仪对钢球磨斑表面和下试盘进行了表征.结果表明:荷电后润滑油分子极性增大,黏度、接触角、表面张力减小,电晕电场产生活性粒子O3、O加速新生表面氧化;在摩擦界面,吸附膜和金属氧化膜共同作用,促进润滑膜的形成,使荷电植物润滑油具有良好的减摩抗磨性能.  相似文献   

6.
合成出1种新的无硫、磷有机钼配位化合物(MCC),采用SRV摩擦磨损试验机评价所制备的有机钼配位化合物作为润滑油添加剂对钢/钢摩擦副摩擦磨损性能的影响,并探讨了其润滑机理.结果表明,所合成的有机钼配位化合物作为润滑油添加剂对钢/钢摩擦副具有较好的抗磨减摩作用,使钢/钢摩擦副的摩擦系数降低,磨损体积损失减小.磨损表面分析表明,在载荷和剪切力作用下,MCC在摩擦表面发生了剧烈的摩擦化学反应,并形成具有稳定结构的含钼氧化物化学反应膜,引起磨损表面硬度随载荷增加而增大,从而起到了抗磨减摩作用.  相似文献   

7.
以改性氧化石墨烯(MGO)/聚苯乙烯为复合壁材,硬脂酸丁酯为润滑芯材,通过种子微悬浮聚合法制备了改性氧化石墨烯微胶囊润滑材料(MGO-Micro LMs),以MGO-Micro LMs为润滑添加剂,经本体浇铸成型制备MGOMicro LMs/PS复合材料.采用IR和SEM表征了化学组成和微观形貌,以微机控制电子万能试验拉伸机和高速往复摩擦磨损试验仪评价了断裂行为和摩擦学性能,以Mico-XAM非接触式三维表面轮廓仪观察磨痕表面形貌并计算磨损率.结果表明:MGO-Micro LMs在聚苯乙烯基体中具有良好的分散性和相容性,同时对聚苯乙烯基体材料具有增韧效果;MGO-Micro LMs可以提高聚苯乙烯基体材料摩擦磨损性能,具有润滑和减摩作用,MGO-Micro LMs润滑机理为边界润滑.  相似文献   

8.
多层石墨烯水分散体系的摩擦磨损性能研究   总被引:3,自引:3,他引:0  
采用液相超声直接剥离法制备了不同厚度的纳米石墨烯片,用SEM、TEM对其形貌进行了表征,利用多功能往复摩擦磨损试验仪考察了石墨烯水分散体系的摩擦磨损性能.通过SEM、EDS、XPS等手段,分析了磨损表面的形貌、元素组成和典型元素的化学状态,初步探讨了石墨烯水分散体系的润滑机理.结果表明:所制备的石墨烯为厚度不一的多层石墨烯混合物,厚度范围为10~180 nm;石墨烯作为水基添加剂具有良好的减摩抗磨性能,使纯水的磨损机理发生转变,由严重的黏着磨损和腐蚀磨损转变为磨粒磨损,主要原因是在石墨烯水分散体系润滑下,磨损表面形成吸附减摩层和摩擦化学反应膜,两者协同作用,抑制Fe的氧化,减轻摩擦磨损.  相似文献   

9.
本文中采用多弧离子镀TiN薄膜对钢基体进行表面改性与SiCH润滑油相结合的方式,研究了SiCH油/TiN薄膜复合体系的真空摩擦学性能,并分析了该复合润滑体系的摩擦磨损机理.研究表明:在SiCH油/TiN薄膜复合体系中,摩擦副对偶双方表面均采用TiN薄膜进行改性后,由于TiN薄膜具有良好的稳定性和耐磨性,与SiCH润滑油构成的复合润滑体系在长寿命摩擦试验中表现出良好的减摩抗磨性能,平均摩擦系数约0.07,在经过1.8×10~6r的摩擦试验后,尽管SiCH油中形成了微量的多甲基基团的硅碳化合物Si-[R-(CH_3)_3]_3并未影响其良好的润滑性能,表明SiCH油/TiN薄膜复合体系耐磨寿命高达1.8×10~6r以上.  相似文献   

10.
采用激光加工技术在不锈钢表面构造深度不同的沟槽型织构图案,通过UMT摩擦磨损试验机测试了不同织构深度的不锈钢表面在PAO6油润滑条件下的摩擦磨损性能,利用表面轮廓仪和扫描电镜(SEM)对摩擦前后的沟槽形貌进行表征分析,采用计算流体动力学(CFD)方法对试验进行模拟并计算,结合ANSYS Fluent软件模拟分析结果,探究了沟槽织构深度对不锈钢表面在油润滑条件下的摩擦学性能的影响机理. 研究结果表明:加工的沟槽织构及其织构深度显著影响不锈钢表面在PAO油润滑条件下的摩擦磨损行为,织构深度为10 μm的不锈钢表面获得最好的抗磨和减摩效果,与未织构表面相比,其摩擦系数与磨痕宽度降低了60%以上. 这主要是由于织构深度为10 μm的不锈钢表面在摩擦过程中,润滑油通过其收敛区域时产生了很好的楔效应,润滑油产生的升力较大,改善了该织构表面在摩擦过程的润滑状态,从而呈现很好的摩擦学性能.   相似文献   

11.
传统的油基润滑剂在使用过程中通常存在冷却性能差,易造成环境污染等问题,近年来绿色环保的水基润滑逐渐受到科学家们的关注. 水由于自身黏度低且易挥发等特点,其作为润滑剂时润滑效果不佳,因此亟待发展高效的水基润滑添加剂来改善其摩擦磨损性能. 在本文中,作者综述了近年来石墨烯基纳米材料的功能化改性及其作为水基润滑添加剂的最新研究进展,总结了其在摩擦过程中的润滑机理,并对目前石墨烯水基润滑添加剂存在的问题及今后重点研究内容进行了展望.   相似文献   

12.
润滑油脂对钢丝微动磨损特性的影响   总被引:2,自引:1,他引:1  
殷艳  张德坤  沈燕 《摩擦学学报》2011,31(5):492-497
在自制的微动摩擦磨损试验机上,以矿用钢丝为研究对象,探讨润滑油脂对钢丝微动磨损特性的影响规律.结果表明:润滑油脂使钢丝微动运行区域中部分滑移区和混合区显著缩小,滑移区增大;摩擦系数和磨损量显著降低,跑合期延长;润滑油脂条件下,部分滑移区损伤轻微,环状区域较光滑,混合区和滑移区摩擦氧化减少,损伤以表面疲劳及磨粒磨损为主,磨痕表面较平滑,损伤程度明显小于干摩擦条件.  相似文献   

13.
本文中采用简单的液相化学反应和水热还原过程,成功制备了还原氧化石墨烯纳米片和氟化镧复合材料(rGO/LaF3). 通过SRV-1微动摩擦试验机测试了系列样品作为水润滑添加剂时的摩擦学性能. 结果显示:当rGO和LaF3的比值为2∶1时,具有最低摩擦系数0.335;当比值为1∶1时,磨损体积最小;相比纯水,添加rGO/LaF3复合材料(质量分数0.1%)后表现出了一定的减摩和抗磨作用,其中抗磨效果比较明显.   相似文献   

14.
Doğuş Özkan 《Meccanica》2018,53(11-12):2861-2882
In this study, tribological performances of two types of anti-wear additive, boron succinimide anti-wear package and ZnDTPs, were investigated in the cylinder liner and piston ring tribological system with a reciprocating tribotest machine. The tribological performances of oils were evaluated in three main contexts including wear rates, surface tribofilm formation and friction. Results showed that NP-3 (boron succinimide containing) lubrication oil which was environment and catalyst friendly, can be an alternative lubrication oil with its tribological performance due to its friction and wear reduction capacity.  相似文献   

15.
为探究低温环境下矿井缠绕提升钢丝绳之间的滑动摩擦磨损特性,使用自制的低温环境钢丝绳摩擦磨损试验装置,以6×19+FC钢丝绳为研究对象,探究低温环境下干摩擦和水油润滑状态下钢丝绳的摩擦磨损特性. 研究结果表明:干摩擦时,摩擦系数随环境温度的降低小幅增大,在?25 ℃时达到最大值,约0.85. 油水润滑状态时,摩擦系数、磨损面积和磨损深度均明显小于干摩擦状态,平均磨损面积减小了约3倍,平均磨损深度减小了约7倍,平均摩擦系数随环境温度的降低先增大后减小,在?15 ℃时达到最大值,约0.35. 此外,随着温度的降低,干摩擦状态时钢丝绳的磨损机理由氧化磨损和磨粒磨损转变为疲劳磨损和黏着磨损;油水润滑状态时,钢丝绳的氧化磨损减弱,黏着磨损先加重后减弱.   相似文献   

16.
45#钢表面复合润滑结构的制备及其摩擦性能研究   总被引:1,自引:1,他引:0  
采用激光微加工技术在45#钢表面制备了微坑型织构,将激光表面织构化与MoS2固体润滑剂相结合在45#钢表面制备了复合润滑结构.研究了其在干摩擦条件下的摩擦磨损性能,考察了织构面密度及织构化微坑大小对其摩擦性能的影响.通过扫描电镜与能量色散谱仪对磨斑表面进行了分析.结果表明:与未织构面相比,织构面具有低而稳定的摩擦系数和高的耐磨寿命;对同一孔径织构面,随着织构密度的增加其表面摩擦系数随之减小,较适宜的织构密度为20%~35%;对同一织构面密度,当织构面密度小于20%时,较小孔径织构面的摩擦系数更低;织构面密度增至35%后,织构面摩擦系数则随孔径增大而减小;由于织构面复合润滑结构中的微坑有效地储存了润滑剂从而在摩擦过程中维持表面润滑薄膜的形成.  相似文献   

17.
合成了两种脲基功能化的咪唑无卤素离子液体DOSS-1和DOSS-4. 采用SRV-V微动摩擦磨损试验机和Bruker-NPFLEX表面非接触光学三维轮廓仪,考察这两种离子液体作为2号复合锂基润滑脂(G)的减摩抗磨添加剂的摩擦学性能. 摩擦测试结果表明:这两种功能化咪唑离子液体添加到2号复合锂基润滑脂(G)中均表现出优异的减摩抗磨性能. 在添加量同等条件下,长链的DOSS-4表现出优于DOSS-1的减摩抗磨性能. 当添加质量分数为3%时,DOSS-4和DOSS-1的减摩抗磨性能最佳. 利用表面轮廓和扫描电镜进一步分析了磨斑表面的形貌,同时结合X射线光电子能谱仪(XPS)进一步分析了磨斑表面主要化学元素组成,阐明其摩擦机理. 该离子液体能够显著地降低摩擦磨损是因其在摩擦副表面形成了含N元素和S元素的化学反应膜.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号