首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78226篇
  免费   7837篇
  国内免费   13764篇
化学   73708篇
晶体学   2399篇
力学   850篇
综合类   543篇
数学   4137篇
物理学   18190篇
  2024年   141篇
  2023年   1179篇
  2022年   1464篇
  2021年   2563篇
  2020年   2811篇
  2019年   3430篇
  2018年   2285篇
  2017年   3488篇
  2016年   3218篇
  2015年   2919篇
  2014年   3700篇
  2013年   7085篇
  2012年   5229篇
  2011年   5514篇
  2010年   4480篇
  2009年   5175篇
  2008年   5123篇
  2007年   5225篇
  2006年   4812篇
  2005年   4222篇
  2004年   3984篇
  2003年   3289篇
  2002年   2808篇
  2001年   2254篇
  2000年   2104篇
  1999年   1679篇
  1998年   1447篇
  1997年   1229篇
  1996年   1049篇
  1995年   1028篇
  1994年   851篇
  1993年   687篇
  1992年   647篇
  1991年   500篇
  1990年   345篇
  1989年   286篇
  1988年   248篇
  1987年   165篇
  1986年   134篇
  1985年   150篇
  1984年   119篇
  1983年   60篇
  1982年   95篇
  1981年   125篇
  1980年   83篇
  1979年   111篇
  1978年   63篇
  1977年   65篇
  1976年   45篇
  1973年   41篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
1.
4D printing is an exciting branch of additive manufacturing. It relies on established 3D printing techniques to fabricate objects in much the same way. However, structures which fall into the 4D printed category have the ability to change with time, hence the “extra dimension.” The common perception of 4D printed objects is that of macroscopic single-material structures limited to point-to-point shape change only, in response to either heat or water. However, in the area of polymer 4D printing, recent advancements challenge this understanding. A host of new polymeric materials have been designed which display a variety of wonderful effects brought about by unconventional stimuli, and advanced additive manufacturing techniques have been developed to accommodate them. As a result, the horizons of polymer 4D printing have been broadened beyond what was initially thought possible. In this review, we showcase the many studies which evolve the very definition of polymer 4D printing, and reveal emerging areas of research integral to its advancement.  相似文献   
2.
《Mendeleev Communications》2022,32(1):126-128
3-Aryl-5-methylidene-2-thiohydantoins were constructed in one-pot reaction of aryl isothiocyanates and 3-morpholino- alanine in alkaline medium with the subsequent treatment with boiling hydrochloric acid.  相似文献   
3.
In the periodic table the position of each atom follows the ‘aufbau’ principle of the individual electron shells. The resulting intrinsic periodicity of atomic properties determines the overall behavior of atoms in two-dimensional (2D) bonding and structure formation. Insight into the type and strength of bonding is the key in the discovery of innovative 2D materials. The primary features of 2D bonding and the ensuing monolayer structures of the main-group II–VI elements result from the number of valence electrons and the change of atom size, which determine the type of hybridization. The results reveal the tight connection between strength of bonding and bond length in 2D networks. The predictive power of the periodic table reveals general rules of bonding, the bonding-structure relationship, and allows an assessment of published data of 2D materials.  相似文献   
4.
Herein, we report a Mott-Schottky catalyst by entrapping cobalt nanoparticles inside the N-doped graphene shell (Co@NC). The Co@NC delivered excellent oxygen evolution activity with an overpotential of merely 248 mV at a current density of 10 mA cm–2 with promising long-term stability. The importance of Co encapsulated in NC has further been demonstrated by synthesizing Co nanoparticles without NC shell. The synergy between the hexagonal close-packed (hcp) and face-centered cubic (fcc) Co plays a major role to improve the OER activity, whereas the NC shell optimizes the electronic structure, improves the electron conductivity, and offers a large number of active sites in Co@NC. The density functional theory calculations have revealed that the hcp Co has a dominant role in the surface reaction of electrocatalytic oxygen evolution, whereas the fcc phase induces the built-in electric field at the interfaces with N-doped graphene to accelerate the H+ ion transport.  相似文献   
5.
《Mendeleev Communications》2022,32(4):537-539
The two novel conglomerates were obtained by crystallization of racemic (2'S,3aS,6aR)/(2'R,3aR,6aS) (glycoluril-1-yl)-3-methylbutanoic acid and (2'R,3aR,6aR)/(2'S,3aS,6aS) (4,6-dimethylglycoluril-1-yl)pentanoic acid synthesized by highly diastereoselective condensation of 4,5-dihydroxy- imidazolidin-2-ones with racemic ureido acids. The differences in the molecular geometry of synthesized racemates were studied by X-ray diffraction that showed them to crystallize as conglomerates in non-centrosymmetric space groups Pna21 and P212121, respectively  相似文献   
6.
A facile biosynthesis route was followed to prepare zinc oxide nanoparticles (ZnO NPs) using Euphorbia milii (E. milii) leaf constituents. The SEM images exhibited presence of spherical ZnO NPs and the corresponding TEM images disclosed monodisperse nature of the ZnO NPs with diameter ranges between 12 and 20 nm. The Brunauer–Emmett–Teller (BET) analysis revealed that the ZnO NPs have specific surface area of 20.46 m2/g with pore diameter of 2 nm–10 nm and pore volume of 0.908 cm3/g. The EDAX spectrum exemplified the existence of Zn and O elements and non-appearance of impurities that confirmed pristine nature of the ZnO NPs. The XRD pattern indicated crystalline peaks corresponding to hexagonal wurtzite structured ZnO with an average crystallite size of 16.11 nm. The FTIR spectrum displayed strong absorption bands at 512 and 534 cm?1 related to ZnO. The photocatalytic action of ZnO NPs exhibited noteworthy degradation of methylene blue dye under natural sunlight illumination. The maximum degradation efficiency achieved was 98.17% at an illumination period of 50 min. The reusability study proved considerable photostability of the ZnO NPs during photocatalytic experiments. These findings suggest that the E. milii leaf constituents can be utilized as suitable biological source to synthesis ZnO NPs for photocatalytic applications.  相似文献   
7.
Given their superior penetration depths, photosensitizers with longer absorption wavelengths present broader application prospects in photodynamic therapy (PDT). Herein, Ag2S quantum dots were discovered, for the first time, to be capable of killing tumor cells through the photodynamic route by near-infrared light irradiation, which means relatively less excitation of the probe compared with traditional photosensitizers absorbing short wavelengths. On modification with polydopamine (PDA), PDA-Ag2S was obtained, which showed outstanding capacity for inducing reactive oxygen species (increased by 1.69 times). With the addition of PDA, Ag2S had more opportunities to react with surrounding O2, which was demonstrated by typical triplet electron spin resonance (ESR) analysis. Furthermore, the PDT effects of Ag2S and PDA-Ag2S achieved at longer wavelengths were almost identical to the effects produced at 660 nm, which was proved by studies in vitro. PDA-Ag2S showed distinctly better therapeutic effects than Ag2S in experiments in vivo, which further validated the enhanced regulatory effect of PDA. Altogether, a new photosensitizer with longer absorption wavelength was developed by using the hitherto-unexplored photodynamic function of Ag2S quantum dots, which extended and enhanced the regulatory effect originating from PDA.  相似文献   
8.
Herein, we report the synthesis of specific silica-supported Co/Co3O4 core–shell based nanoparticles prepared by template synthesis of cobalt-pyromellitic acid on silica and subsequent pyrolysis. The optimal catalyst material allows for general and selective hydrogenation of pyridines, quinolines, and other heteroarenes including acridine, phenanthroline, naphthyridine, quinoxaline, imidazo[1,2-a]pyridine, and indole under comparably mild reaction conditions. In addition, recycling of these Co nanoparticles and their ability for dehydrogenation catalysis are showcased.  相似文献   
9.
In this work, a vanillin complex is immobilized onto MCM-41 and characterized by FT-IR, X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, thermogravimetric analysis, and BET techniques. This supported Schiff base complex was found to be an efficient and recoverable catalyst for the chemoselective oxidation of sulfides into sulfoxides and thiols into their corresponding disulfides (using hydrogen peroxide as a green oxidant) and also a suitable catalyst for the preparation of 2,3-dihydroquinazolin-4(1H)-one derivatives in water at 90°C. Using this protocol, we show that a variety of disulfides, sulfoxides, and 2,3-dihydroquinazolin-4(1H)-one derivatives can be synthesized in green conditions. The catalyst can be recovered and recycled for further reactions without appreciable loss of catalytic performance.  相似文献   
10.
The mechanisms of CO2 coupling with the propargylic alcohol using alkali carbonates M2CO3 (M = Li, Na, K, Cs) have been investigated by means of density functional theory calculations. The calculations reveal that the target product tetronic acid (TA) is yielded through two stages: (a) the formation of the α-alkylidene cyclic carbonate (αACC) intermediate via Cs2CO3-mediated carboxylative cyclization of the propargylic alcohol with CO2, and (b) the conversion of the αACC intermediate with Cs2CO3 to produce the cesium salt of the TA. Since the overall kinetic barriers for the two stages are comparable and affordable, the excellent chemoselectivity to the TA should be primarily originated from the high thermodynamic stability of the cesium salt of the TA. Moreover, relative to the TA, the possibility to yield the by-product acyclic carbonate can be excluded due to the both kinetics and thermodynamic inferiority. This result is different from the organic base-mediated reaction. Alternatively, our calculations predict that CsHCO3 together generated with the cesium salt of the TA might also be an available mediating reagent for the incorporation of CO2 with the propargylic alcohol. Compared to other alkali carbonates M2CO3 (M = Li, Na, K), the stronger basicity of Cs2CO3 and the lower ionic potential of cesium ion can raise the effective concentration of the αACC intermediate, and thus the conversion of the αACC intermediate into the cesium salt of the TA can be achieved with high yield.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号