首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
数学   2篇
物理学   5篇
  2019年   2篇
  2017年   1篇
  2014年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
排序方式: 共有7条查询结果,搜索用时 296 毫秒
1
1.
One-dimensional deposition of collimated Cr atomic beam focused by a near-resonant Gaussian standing-laser field with wavelength of 425.55 nm is examined from particle-optics approach by using an adaptive step size, fourth-order Runge-Kutta type algorithm. The influence of laser power on deposition of atoms in laser standing wave is discussed and the simulative result shows that the FWHM of nanometer stripe is 102 nm and contrast is 2:1 with laser power equal to 3 mW, the FWHM is 1.2 nm and contrast is 32:1 with laser power equal to 16 mW, but with laser power increase, equal to 50 mW, the nonmeter structure forms the multi-crests and exacerbates. Supported by the Science Foundation of Guangxi Education Department (Grant No. 200807MS006)  相似文献   
2.
Graphene-based materials exhibit unique properties that have been sought to utilize for various potential applications. Many studies suggest that graphene-based materials can be cytotoxic, which may be attributed to destructive effects on cell membranes.However, there still are conflicting results regarding interactions between graphene-based materials and lipid membranes. Here,through cryo-electron microscopy(Cryo-EM) and dye-leakage experiments along with in silico methods, we found that graphene oxide nanosheets induce significant membrane damage, while the effect of pristine graphene is negligible. We revealed the importance of heterogeneous oxidization of graphene-based nanosheets in damaging vesicle membranes. Moreover, that not only the oxidization degree but also the oxidization loci and membrane tension play important roles in the cytotoxicity of the graphene-based nanosheets.  相似文献   
3.
Metallic nanostructures have underpinned plasmonic-based advanced photonic devices in a broad range of research fields over the last decade including physics, engineering, material science and bioscience. The key to realizing functional plasmonic resonances that can manipulate light at the optical frequencies relies on the creation of conductive metallic structures at the nanoscale with low structural defects. Currently, most plasmonic nanostructures are fabricated either by electron beam lithography (EBL) or by focused ion beam (FIB) milling, which are expensive, complicated and time-consuming. In comparison, the direct laser writing (DLW) technique has demonstrated its high spatial resolution and cost-effectiveness in three-dimensional fabrication of micro/nanostructures. Furthermore, the recent breakthroughs in superresolution nanofabrication and parallel writing have significantly advanced the fabrication resolution and throughput of the DLW method and made it one of the promising future nanofabrication technologies with low-cost and scalability. In this review, we provide a comprehensive summary of the state-of-the-art DLW fabrication technology for nanometer scale metallic structures. The fabrication mechanisms, different material choices, fabrication capability, including resolution, conductivity and structure surface smoothness, as well as the characterization methods and achievable devices for different applications are presented. In particular, the development trends of the field and the perspectives for future opportunities and challenges are provided at the end of the review. It has been demonstrated that the quality of the metallic structures fabricated using the DLW method is excellent compared with other methods providing a new and enabling platform for functional nanophotonic device fabrication.  相似文献   
4.
5.
The rapid neutron-capture process(r-process) is one of the main mechanisms to explain the origin of heavy elements in the universe. Although the past decades have seen great progress in understanding this process, the related nuclear physics inputs to r-process models include significant uncertainty. In this study, ten nuclear mass models, including macroscopic, macroscopicmicroscopic, and microscopic models, are used to calculate the β-decay rates and neutron-capture rates of the neutron-rich isotopes for the r-process simulations occurring in three classes of astrophysical conditions. The final r-process abundances include uncertainties introduced by the nuclear mass model mainly through the variation of neutron-capture rates, whereas the uncertainties of β-decay rates make a relatively small contribution. The uncertainties in different astrophysical scenarios are also investigated,and are found to be connected to the diverse groups of nuclei produced during nucleosynthesis.  相似文献   
6.
We propose two conjectures of Hard Lefschetz type on Chow groups and prove them for some special cases. For abelian varieties, we show that they are equivalent to the well-known conjectures of Beauville and Murre.  相似文献   
7.
We get an explicit lower bound for the radius of a Bergman ball contained in the Dirichlet fundamental polyhedron of a torsion free discrete group G伡PU(n,1)acting on complex hyperbolic space.As an application,we also give a lower bound for the volumes of complex hyperbolic n-manifolds.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号