首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We present a new method of additive laser technology referred to as STED nanolithography technique. This technique provides a means for fabrication of 3D dielectric and plasmonic composite nanostructures. The new technology is of the utmost interest for the electronics manufacturing industry, in particular, for formation of specific hybrid (metal–dye) nanostructures, which can be utilized as luminescent markers in biology, medicine, criminalistics, and the trade industry. In the present study, we demonstrate the advantages of STED-inspired nanolithography for fabrication of metallic and hybrid nanostructures. The 3D-scanning setup implemented offers the possibility to form both periodic and aperiodic nanostructured arrays. We show the possibility to decrease substantially the lateral size of the lines formed with the use of STED nanolithography as compared to the direct laser writing (DLW) method. The STED nanolithography technique proposed provides a means for synthesizing metallic nanoparticles in the specified points of the volume of the studied object in vivo. In addition, we demonstrate the synthesis of metallic lines by means of STED nanolithography. Moreover, nanometer spatial precision of positioning of the synthesized nanoobjects is achieved. Therefore, it is possible to obtain significant local enhancement of the emission of luminescent markers (surface enhanced luminescence) at any desired point or area of the sample due to plasmonic enhancement of the electromagnetic fields near the surface of metallic nanostructures.  相似文献   

2.
Currently, magnetic nanostructures are routinely grown by focused electron beam induced deposition (FEBID). In the present article, we review the milestones produced in the topic in the past as well as the future applications of this technology. Regarding past milestones, we highlight the achievement of high-purity cobalt and iron deposits, the high lateral resolution obtained, the growth of 3D magnetic deposits, the exploration of magnetic alloys and the application of magnetic deposits for Hall sensing and in domain-wall conduit and magnetologic devices. With respect to future perspectives of the topic, we emphasize the potential role of magnetic nanostructures grown by FEBID for applications related to highly integrated 2D arrays, 3D nanowires devices, fabrication of advanced scanning-probe systems, basic studies of magnetic structures and their dynamics, small sensors (including biosensors) and new applications brought by magnetic alloys and even exchange biased systems.  相似文献   

3.
Plasmonics based on localized surface plasmon resonance (LSPR) has found many exciting appli- cations recently. Those applications usually require a good morphological and structural control of metallic nanostructures. Oblique angle deposition (OAD) has been demonstrated as a powerful technique for various plasmonic applications due to its advantages in controlling the size, shape, and composition of metallic nanostructures. In this review, we focus on the fabrication of metallic nanostructures by OAD and their applications in plasmonics. After a brief introduction to OAD technique, recent progress of applying OAD in fabricating noble metallic nanostructures for LSPR sensing, surface-enhanced Raman scattering, surface-enhanced infrared absorption, metal-enhanced fluorescence, and metamaterials, and their corresponding properties are reviewed. The future requirements for OAD plasmonics applications are also discussed.  相似文献   

4.
姜美玲  郑立恒  池骋  朱星  方哲宇 《物理学报》2017,66(14):144201-144201
表面等离激元以其独特的光学性质广泛应用于纳米尺度的局域电磁场增强、超高分辨成像及微弱光电探测.阴极荧光是电子与物质相互作用而产生的光学响应,利用电子束激发金属纳米结构能够实现局域等离激元共振,并在亚波长尺度实现对共振模式的调控,具有超高空间分辨的成像特点.阴极荧光探测通常结合扫描电子显微镜或透射电子显微镜而实现,目前己被应用于表面等离激元的探测及共振模式的分析.本文从阴极荧光物理机理出发,综述了单一金属纳米结构和金属耦合结构的等离激元共振模式阴极荧光研究进展,并总结了阴极荧光与角分辨、时间分辨以及电子能量损失谱等关键技术相结合的应用,进一步分析了其面临的关键问题,最后展望了阴极荧光等离激元研究方向.  相似文献   

5.
Periodic metallic nano/microstructures have received a great a deal of attention in the photonics research community over the last few decades due to their intriguing optical properties. Three‐dimensional metallic nano/microstructures such as metallic photonic crystals, metamaterials, and plasmonic devices possess unique characteristics of tailored thermal radiation, negative refraction and deep subwavelength confinement of light. In this article, the recent progress on the experimental methods for the realisation of three‐dimensional periodic metallic and thin metal film coated dielectric nano/microstructures operating from optical to mid‐infrared frequencies has been reviewed. Advancement of the state‐of‐the‐art nanofabrication methods over the last few decades have led to the development of metallic nano/microstructures of diverse geometries, high resolution features and large scale production. The recent progress in the novel fabrication methods have inspired the development of functional and exciting photonic devices based on periodic metallic nano/microstructures with various applications in photonics including communications, photovoltaics, and biophotonics.  相似文献   

6.
张祎男  王丽华  柳华杰  樊春海 《物理学报》2017,66(14):147101-147101
纳米光子学是研究光在纳米尺度下的行为以及光和纳米材料相互作用的一门科学.金属纳米材料凭借其独特的表面等离子体效应,可以在衍射极限以下对光进行传递和聚焦,因而是纳米光子学研究的重点.大量研究表明,通过调控金属纳米材料的形貌和成分可以控制表面等离子体的性质,从而对光进行可控调节.近年来,随着DNA纳米技术的发展,又为纳米光子学的发展带来了新的机遇.首先,人们发现不同的DNA序列可以调控金属纳米颗粒的成长,从而影响金属纳米颗粒的形貌和成分.此外,利用DNA自组装技术,可以将金属纳米颗粒组装成为有序可控的纳米结构.因此,基于DNA的纳米光子学研究近年来发展十分迅速.在此背景下,本文对相关研究进行归纳与总结,以期吸引更多研究人员的关注,推动该领域的进一步发展.本文首先介绍了金属纳米结构基于表面等离体实现突破光学衍射极限的原理,然后按照DNA对金属纳米结构的形貌或成分影响方式的不同分成若干部分,对基于DNA的纳米光子学做了系统的综述,最后展望了未来可能的发展方向.  相似文献   

7.
In this Letter we evaluate a technique for the efficient and flexible generation of aluminum nanorings based on double patterning and variable shaped electron beam lithography. The process is demonstrated by realizing nanorings with diameters down to 90 nm and feature sizes of 30 nm utilizing a writing speed of one ring per microsecond. Because of redepositions caused by involved etching processes, the material of the rings and, therefore, the impact on the plasmonic properties, are unknown. This issue, which is commonly encountered when metals are nanostructured, is solved by adapting a realistic simulation model that accounts for geometry details and effective material properties. Based on this model, the redepositions are quantified, the plasmonic properties are investigated, and a design tool for the very general class of nanofabrication techniques involving the etching of metals is provided.  相似文献   

8.
Recent progresses in nanotechnology fabrication gives the opportunity to build highly functional nano-devices. 3D structures based on noble metals or covered by them can be realized down to the nano-scales, obtaining different devices with the functionalities of plasmonic nano-lenses or nano-probes. Here, nano-cones decorated with silver nano-grains were fabricated using advanced nano-fabrication techniques. In fabricating the cones, the angle of the apex was varied over a significant range and, in doing so, different geometries were realized. In depositing the silver nano-particles, the concentration of solution was varied, whereby different growth conditions were realized. The combined effect of tip geometry and growth conditions influences the size and distribution of the silver nano grains. The tips have the ability to guide or control the growth of the grains, in the sense that the nano-particles would preferentially distribute along the cone, and especially at the apex of the cone, with no o minor concentration effects on the substrate. The arrangement of metallic nano-particles into three-dimensional (3D) structures results in a Surface Enhanced Raman Spectroscopy (SERS) device with improved interface with analytes compared to bi-dimensional arrays of metallic nanoparticles. In the future, similar devices may find application in microfluidic devices, and in general in flow chambers, where the system can be inserted as to mimic a a nano-bait, for the recognition of specific biomarkers, or the manipulation and chemical investigation of single cells directly in native environments with good sensitivity, repeatability and selectivity.  相似文献   

9.
In this paper, we explore the use of nanostructures for a number of fascinating applications. These applications based on nanostructures include (1) optical sensors, (2) nanopixel printing, (3) improving the resolution of imaging techniques, and (4) lithography. In the sensing field, nanostructures are exploited for advanced sensor performance, namely, the label-free and enhanced sensitivity of (1) the surface plasmon resonance sensor and (2) the extraordinary optical transmission sensor and (3) the high sensitivity and selectivity of surface-enhanced Raman spectroscopy. In addition, research using nanostructures for visual applications was introduced for (1) harnessing nanostructures for full-color pixel printing and (2) exploiting metallic nanostructures to enhance the imaging resolution under diffraction limits based on the plasmonic effect. Finally, we introduce low cost, high accuracy, and fast lithographic methods based on the plasmonic effect by exploiting metallic nanostructures.  相似文献   

10.
As typical one‐dimensional nanostructures for waveguiding tightly confined optical fields beyond the diffraction limit, metal nanowires have been used as versatile nanoscale building blocks for functional plasmonic and photonic structures and devices. Metal nanowires, especially those fabricated by bottom‐up synthesis such as Ag and Au nanowires, usually exhibit excellent diameter uniformity and surface smoothness with diameters down to tens of nanometers, which offers great opportunities for plasmonic waveguiding of optical fields with deep‐subwavelength confinement, coherence maintenance and low scattering losses. Based on nanowire plasmonic waveguides, a variety of applications ranging from plasmonic couplers, interferometers, resonators to photon emitters have been reported in recent years. In this article, significant progresses in these nanowire plasmonic waveguides, circuits and devices are reviewed. Future outlook and challenges are also discussed.  相似文献   

11.
激光超衍射加工机理与研究进展   总被引:2,自引:0,他引:2       下载免费PDF全文
张心正  夏峰  许京军 《物理学报》2017,66(14):144207-144207
随着纳米科技和微纳电子器件的发展,制造业对微纳加工技术的要求越来越高.激光加工技术是一种绿色先进制造技术,具有巨大的发展潜力,己广泛应用于不同的制造领域.为实现低成本、高效率、大面积尤其是高精度的激光微纳加工制造,研究和发展激光超衍射加工技术具有十分重要的科学意义和应用价值.本文首先阐述了基于非线性效应的远场激光直写超衍射加工技术的原理与国内外发展状况,包括激光烧蚀加工技术、激光诱导改性加工技术和多光子光聚合加工技术等;然后介绍了几种基于倏逝波的近场激光超衍射加工技术,包括扫描近场光刻技术、表面等离子激元光刻技术等新型超衍射激光近场光刻技术的机理与研究进展;最后对激光超衍射加工中存在的问题及未来发展方向进行了讨论.  相似文献   

12.
Surface plasmon polaritons(SPPs) are evanescent waves propagating along metal-dielectric interfaces, which provide an effective way to realize optical wave guiding with subwavelength confinement. Metallic nanostructures supporting SPPs,that is, plasmonic waveguides, are considered as required components to construct nanophotonic devices and circuits with a high degree of miniaturization and integration. In this paper, various types of plasmonic waveguides operating in the visible, infrared, and terahertz regions are reviewed, and the status of the research on their fundamentals, fabrications,and applications is provided as well. First, we discuss the mechanisms of SPPs beyond the diffraction limit, and their launching methods. Then, the characteristics of SPPs on various plasmonic waveguides are reviewed, including top-down and bottom-up fabricated types. Considering applications, certain prototypes of plasmonic devices and circuits constructed by plasmonic waveguides for bio/chemo sensing, router, and light modulation are demonstrated. Finally, a summary and future outlook of plasmonic waveguides are given.  相似文献   

13.
Two-photon polymerization (2PP) is a powerful tool for direct laser writing of micro-optical and photonic structures due to its flexibility in 3D structuring and sub-micrometer resolution. However, it can be time consuming to fabricate arrays of micro-optical devices and complex photonic structures. In this study, we propose to use predefined patterns (PPs) for parallel 2PP processing. A PP contains a multiple focal spot pattern optimized for the fabrication of certain microstructures. PP can be created by holographic laser beam modulation with a spatial light modulator (SLM). The quantity and position of the multiple foci can be flexibly and precisely controlled by predesigned computer generated holograms (CGHs). With these specially designed PPs, parallel fabrication of arbitrary distributed microlens arrays and 3D photonic structures is demonstrated. This method significantly improves throughput and flexibility of the 2PP technique and can be used for mass production of functional devices in micro-optics and photonics.  相似文献   

14.
A novel method based on femtosecond laser‐induced forward transfer for high‐throughput and efficient fabrication of periodic multilayer plasmonic metamaterials is demonstrated. With precisely controlling laser raster path applied on sputtered multilayer thin films, the laser‐ablated materials can be transferred to another substrate leaving the fabricated multilayer structure on the original substrate. Subsequently, three‐dimensional metamaterials can be made by multilayer structuring. Moreover, all the experimental results show that to create such multilayer split resonant rings (SRRs) with uniform profile, the laser fluence should be fine controlled under proper conditions. The optical property of fabricated multilayer SRR array is investigated by optical measurements and finite‐difference time‐domain simulations, showing various resonant modes in the middle‐IR region. The calculated induced current distributions exhibit rich resonance properties of the structures as well. This work markedly extends the laser direct writing technique to a wide application in fabricating complicated metamaterials and plasmonic devices efficiently.  相似文献   

15.
微纳米加工技术及其应用综述   总被引:2,自引:0,他引:2  
崔铮 《物理》2006,35(1):34-39
材料与结构在微纳米尺度展现了许多不同于宏观尺度的新特征,纳米技术已经成为当前科学研究与工业开发的热门领域之一。微小型化依赖于微纳米尺度的功能结构与器件,实现功能结构微纳米化的基础是先进的微纳米加上技术,文章对微纳米加上技术做了一个综合的介绍,简要说明了微纳米加工技术与传统加工技术的区别,在微纳米加工技术的应用方面提出了一些合理选择加工技术的原则,并对当前微纳米加工技术面临的挑战和今后发展的趋势作了预测。  相似文献   

16.
Plasmonics is an exciting new device technology that has recently emerged. It exploits the unique optical properties of metallic nanostructures to enable routing and manipulation of light at the nanoscale. A tremendous synergy can be attained by integrating plasmonic, electronic, and conventional dielectric photonic devices on the same chip and taking advantage of the strengths of each technology. We will provide a perspective on future directions and possibilities for integrating plasmonic devices on a Si chip. PACS 42.82.-m; 42.82.Ds  相似文献   

17.
Plasmonic metallic nanoholes are widely used to focus or image in the nanoscale field. In this article, we present the results of the design, fabrication, and plasmonic properties of a two-dimensional metallic pentagram nanohole array. The nanoholes can excite the extraordinary transmission phenomenon. We used the finite-difference time-domain method to design the transmission and the localized surface plasmon resonance electric field distribution in the near field. The focused ion beam method was used to fabricate the nanoholes. The transmittance in the far field was measured by a scanning spectrophotometer. The difference between the design and the experimental results may be caused by the conversion between the near field and the far field. The near field electric field distribution on the surface plasmonic nanoholes was measured by a near-field scanning optical microscope. From our results, we found that the maximum transmission of the nanoholes is 2.4. Therefore, our plasmonic nanohole can significantly enhance the transmission by exciting the plasmonic phenomenon on the surface of the nanostructures.  相似文献   

18.
Synthesis at the nanoscale has progressed at a very fast pace during the last decades. The main challenge today lies in precise localization to achieve efficient nanofabrication of devices. In the present work, we report on a novel method for the patterning of gold metallic nanoparticles into nanostructures on a silicon-on-insulator (SOI) wafer. The fabrication makes use of relatively accessible equipment, a scanning electron microscope (SEM), and wet chemical synthesis. The electron beam implants electrons into the insulating material, which further anchors the positively charged Au nanoparticles by electrostatic attraction. The novel fabrication method was applied to several substrates useful in microelectronics to add plasmonic particles. The resolution and surface density of the deposition were tuned, respectively, by the electron energy (acceleration voltage) and the dose of electronic irradiation. We easily achieved the smallest written feature of 68?±?18 nm on SOI, and the technique can be extended to any positively charged nanoparticles, while the resolution is in principle limited by the particle size distribution and the scattering of the electrons in the substrate.
Graphical abstract ?
  相似文献   

19.
Owing to exotic optical responses, metallic nanoparticles and nanostructures are finding broad applications in laser science, leading to numerous design variations of plasmonic nanolasers. Nowadays, two of the most intriguing plasmonic nanolasing devices are spasers and random lasers. While a spaser is based on a single metallic nanoparticle resonator with the optical feedback provided by the localized surface plasmon resonance, the operation of a random laser relies on multiple light scattering within randomly distributed metallic nanoparticles. In this paper, an up‐to‐date review on the applications of metallic nanoparticles in spasers and random lasers is provided. Principles of a random spaser, a device combining the features of a spaser and a random laser, are briefly discussed as well. The paper is focused on major theoretical and experimental approaches to control the core metrics of lasing performance, including threshold, resonant wavelength, and emission directionality. The applications of spasers and random lasers in the fields of sensing and imaging are also mentioned. Finally, the challenges and future perspectives in this area of research are discussed.  相似文献   

20.
In this paper, we propose a new form of nanostructures with Al film deposited on a patterned dielectric material for generating structural color, which is induced by local surface plasmonic resonant(LSPR) absorption in sub-wavelengthindented hole/ring arrays. Unlike other reported results obtained by using focus ion beam(FIB) to create metallic nanostructures, the nano-sized hole/ring arrays in Al film in this work are replicated by high resolution electron beam lithography(EBL) combined with self-aligned metallization. Clear structural color is observed and systematically studied by numerical simulations as well as optical characterizations. The central color is strongly related to the geometric size, which provides us with good opportunities to dye the colorless Al surface by controlling the hole/ring dimensions(both diameter and radius), and to open up broad applications in display, jewelry decoration, green production of packing papers, security code,and counterfeits prevention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号