首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   6篇
物理学   7篇
  2023年   2篇
  2022年   1篇
  2019年   1篇
  2018年   2篇
  2014年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
The phenomenon of phase separation into antiferromagnetic(AFM) and superconducting(SC) or normal-state regions has great implication for the origin of high-temperature(high-T_c) superconductivity. However, the occurrence of an intrinsic antiferromagnetism above the T_c of(Li,Fe)OHFe Se superconductor is questioned. Here we report a systematic study on a series of(Li,Fe)OHFe Se single crystal samples with T_c up to ~41 K. We observe an evident drop in the static magnetization at T_(afm) ~ 125 K, in some of the SC(T_c 38 K, cell parameter c■9.27 ?) and non-SC samples. We verify that this AFM signal is intrinsic to(Li,Fe)OHFe Se. Thus, our observations indicate mesoscopic-to-macroscopic coexistence of an AFM state with the normal(below T_(afm)) or SC(below T_c) state in(Li,Fe)OHFe Se. We explain such coexistence by electronic phase separation, similar to that in high-T_c cuprates and iron arsenides. However, such an AFM signal can be absent in some other samples of(Li,Fe)OHFe Se, particularly it is never observed in the SC samples of T_c 38 K, owing to a spatial scale of the phase separation too small for the macroscopic magnetic probe. For this case, we propose a microscopic electronic phase separation. The occurrence of two-dimensional AFM spin fluctuations below nearly the same temperature as T_(afm), reported previously for a(Li,Fe)OHFe Se(T_c ~ 42 K) single crystal, suggests that the microscopic static phase separation reaches vanishing point in high T_c(Li,Fe)OHFe Se. A complete phase diagram is thus established. Our study provides key information of the underlying physics for high-T_c superconductivity.  相似文献   
2.
We synthesize a series of Mn substituted(Li, Fe)OHFeSe superconductor single crystals via a modified ion-exchange method, with the Mn concentration z(the atomic ratio of Mn:Se) ranging from 0 to 0.07. The distribution homogeneity of the Mn element incorporated into the lattice of(Li, Fe)OHFeSe is checked by combined measurements of high-angleannular-dark-field(HAADF) imaging and electron energy-loss spectroscopy(EELS). Interestingly, we find that the superconducting transition temperature T_c and unit cell parameter c of the Mn-doped(Li, Fe)OHFeSe samples display similar V-shaped evolutions with the increasing dopant concentration z. We propose that, with increasing doping level, the Mn dopant first occupies the tetrahedral sites in the(Li, Fe)OH layers before starting to substitute the Fe element in the superconducting Fe Se layers, which accounts for the V-shaped change in cell parameter c. The observed positive correlation between the T_c and lattice parameter c, regardless of the Mn doping level z, indicates that a larger interlayer separation, or a weaker interlayer coupling, is essential for the high-T_c superconductivity in(Li, Fe)OHFeSe. This agrees with our previous observations on powder, single crystal, and film samples of(Li, Fe)OHFeSe superconductors.  相似文献   
3.
We report protonation in several compounds by an ionic-liquid-gating method, under optimized gating conditions.This leads to single superconducting phases for several compounds. Non-volatility of protons allows post-gating magnetization and transport measurements. The superconducting transition temperature T_c is enhanced to 43.5 K for FeSe_(0.93)S_(0.07), and 41 K for Fe Se after protonation. Superconducting transitions with T_c~15 K for ZrNCl,~7.2 K for 1-TaS_2, and ~3.8 K for Bi_2Se_3 are induced after protonation. Electric transport in protonated FeSe_(0.93)S_(0.07) confirms high-temperature superconductivity. Our~1 H nuclear magnetic resonance(NMR)measurements on protonated Fe Se_(1-x)S_x reveal enhanced spin-lattice relaxation rate 1/~1T_1 with increasing x,which is consistent with the LDA calculations that H~+ is located in the interstitial sites close to the anions.  相似文献   
4.
We report the synthesis, crystal structure, and superconductivity of Ti4Ir2O. The title compound crystallizes in an η-carbide type structure of the space group Fd3m(No. 227), with lattice parameters a=b=c=11.6194(1) ?. The superconducting temperature Tc is found to be 5.1–5.7 K. Most surprisingly, Ti4Ir2O hosts an upper critical field of 16.45 T, which is far beyond the Pauli paramagnetic limit. Strong coupled superconductivity with evidence...  相似文献   
5.
Qing-Song Yang 《中国物理 B》2023,32(1):17402-017402
We report systematic studies on superconducting properties of the Laves phase superconductor ZrIr$_2$. It crystallizes in a C15-type (cubic MgCu$_2$-type, space group $Fd\overline{3}m$) structure in which the Ir atoms form a kagome lattice, with cell parameters $a=b=c=7.3596(1)$ Å. Resistivity and magnetic susceptibility measurements indicate that ZrIr$_2$ is a type-II superconductor with a transition temperature of 4.0 K. The estimated lower and upper critical fields are 12.8 mT and 4.78 T, respectively. Heat capacity measurements confirm the bulk superconductivity in ZrIr$_2$. ZrIr$_2$ is found to possibly host strong-coupled s-wave superconductivity with the normalized specific heat change $\Delta C_{\rm e}/\gamma T_{\rm c} \sim 1.86$ and the coupling strength $\Delta_0/k_{\rm B}T_{\rm c} \sim 1.92$. First-principles calculations suggest that ZrIr$_2$ has three-dimensional Fermi surfaces with simple topologies, and the states at Fermi level mainly originate from the Ir-5d and Zr-4d orbitals. Similar to SrIr$_2$ and ThIr$_2$, spin--orbit coupling has dramatic influences on the band structure in ZrIr$_2$.  相似文献   
6.
Two correlated superconducting phases are identified in the layered superconductor BaTh (Sb1-xBix)2O (x = 0.16), with the superconducting transition temperatures of Tc = 6K (the high Tc phase) and 3.4K (the low Tc Phase), respectively. The 6K superconducting phase appears first in the as-prepared sample and can decay into the low TC phase by exposure to an ambient atmosphere for a certain duration. Specially, the high Tc phase can reappear from the decayed sample with the low Tc phase by vacuum annealing. It is also found that the CDW /SDW order occurs only with the 6 K superconducting phase. These notable features and alteration of the superconductivity due to the post-processing and external pressure can be explained by the scenario of electronic phase separation.  相似文献   
7.
We report the observation for the pz electron band and the band inversion in Fe1+yTexSe1-x with angleresolved photoemission spectroscopy. Furthermore, we found that excess Fe(y>0) inhibits the topological band inversion in Fe1+yTexSe1-x,which explains the absence of Majorana zero modes in previous reports for Fe1+yTexSe1-x with excess Fe. Based on our analysis of different amounts of Te doping a...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号