首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   6篇
物理学   6篇
  2022年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Frustrated quantum magnets are expected to host many exotic quantum spin states like quantum spin liquid(QSL), and have attracted numerous interest in modern condensed matter physics. The discovery of the triangular lattice spin liquid candidate YbMgGaO_4 stimulated an increasing attention on the rare-earth-based frustrated magnets with strong spin-orbit coupling. Here we report the synthesis and characterization of a large family of rare-earth chalcogenides AReCh_2(A = alkali or monovalent ions, Re = rare earth, Ch = O,S,Se). The family compounds share the same structure(R3 m) as YbMgGaO_4,and antiferromagnetically coupled rare-earth ions form perfect triangular layers that are well separated along the c-axis. Specific heat and magnetic susceptibility measurements on NaYbO_2,NaYbS_2 and NaYbSe_2 single crystals and polycrystals, reveal no structural or magnetic transition down to 50 mK. The family, having the simplest structure and chemical formula among the known QSL candidates, removes the issue on possible exchange disorders in YbMgGaO_4. More excitingly, the rich diversity of the family members allows tunable charge gaps, variable exchange coupling, and many other advantages.This makes the family an ideal platform for fundamental research of QSLs and its promising applications.  相似文献   
2.
We report protonation in several compounds by an ionic-liquid-gating method, under optimized gating conditions.This leads to single superconducting phases for several compounds. Non-volatility of protons allows post-gating magnetization and transport measurements. The superconducting transition temperature T_c is enhanced to 43.5 K for FeSe_(0.93)S_(0.07), and 41 K for Fe Se after protonation. Superconducting transitions with T_c~15 K for ZrNCl,~7.2 K for 1-TaS_2, and ~3.8 K for Bi_2Se_3 are induced after protonation. Electric transport in protonated FeSe_(0.93)S_(0.07) confirms high-temperature superconductivity. Our~1 H nuclear magnetic resonance(NMR)measurements on protonated Fe Se_(1-x)S_x reveal enhanced spin-lattice relaxation rate 1/~1T_1 with increasing x,which is consistent with the LDA calculations that H~+ is located in the interstitial sites close to the anions.  相似文献   
3.
Growth of high-quality single crystals is of great significance for research of condensed matter physics. The exploration of suitable growing conditions for single crystals is expensive and time-consuming, especially for ternary compounds because of the lack of ternary phase diagram. Here we use machine learning(ML) trained on our experimental data to predict and instruct the growth. Four kinds of ML methods, including support vector machine(SVM), decision tree, random forest and gradient boosting decision tree, are adopted. The SVM method is relatively stable and works well, with an accuracy of 81% in predicting experimental results. By comparison,the accuracy of laboratory reaches 36%. The decision tree model is also used to reveal which features will take critical roles in growing processes.  相似文献   
4.
We report 121Sb nuclear quadrupole resonance(NQR)measurements on kagome superconductor CsV3Sb5 with Tc=2.5 K.121Sb NQR spectra split after a charge density wave(CDW)transition at 94 K,which demonstrates a commensurate CDW state.The coexistence of the high temperature phase and the CDW phase between 91 K and 94 K manifests that it is a first order phase transition.The CDW order exhibits tri-hexagonal deformation with a lateral shift between the adjacent kagome layers,which is consistent with 2×2×2 superlattice modulation.The superconducting state coexists with CDW order and shows a conventional s-wave behavior in the bulk state.  相似文献   
5.
We have successfully synthesized two novel compounds[A6Cl][Fe24Se26](A=K,Rb).The key structural units of them are FeSe octamers,consisting of edge-shared FeSe4 tetrahedra.Two kinds of FeSe octamer layers with different connection configurations stack along the c axis,forming a three-dimensional(3D)TiAl3-type structure.Interestingly,the 3D structural topology of these ocatmers in one unit cell is similar to the local atomic arrangement of themselves,i.e.,self-similarity in structure.Physical property characterizations indicate that both the compounds exhibit insulating antiferromagnetism with Neel temperatures Tn^110K and 75K for[K6Cl][Fe24Se26]and[Rb6Cl][Fe24Se26].  相似文献   
6.
通过对FeSe进行化学插层可以将其超导转变温度(Tc)从约8 K提高到40 K以上,实现高温超导电性.最近,我们对两种插层FeSe高温超导材料(Li0.84Fe0.16)OHFe0.98Se和Li0.36(NH3yFe2Se2开展了高压调控研究,发现压力会首先抑制高温超导相(称为SC-I相),然后在临界压力Pc以上诱导出第二个高温超导相(称为SC-Ⅱ相),呈现出双拱形T-P超导相图.这两个体系的Pc分别约为5和2 GPa,两个体系SC-Ⅱ相的最高Tc分别可以达到约52和55 K,比相应SC-I相的初始Tc提高了10 K.对(Li0.84Fe0.16)OHFe0.98Se的正常态电输运性质分析表明,SC-I和SC-Ⅱ相的正常态分别具有费米液体和非费米液体行为,意味着这两个超导相可能存在显著差异.此外,还发现这两个体系的SC-Ⅱ相的Tc与霍尔系数倒数1/RH(∝载流子浓度ne)具有很好的线性依赖关系.对(Li0.84Fe0.16)OHFe0.98Se的高压X射线衍射测量排除了其在10 GPa以内发生结构相变的可能,因此Pc以上SC-Ⅱ相的出现和载流子浓度的增加很可能起源于压力导致的费米面重构.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号