首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   4篇
物理学   4篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
The phenomenon of phase separation into antiferromagnetic(AFM) and superconducting(SC) or normal-state regions has great implication for the origin of high-temperature(high-T_c) superconductivity. However, the occurrence of an intrinsic antiferromagnetism above the T_c of(Li,Fe)OHFe Se superconductor is questioned. Here we report a systematic study on a series of(Li,Fe)OHFe Se single crystal samples with T_c up to ~41 K. We observe an evident drop in the static magnetization at T_(afm) ~ 125 K, in some of the SC(T_c 38 K, cell parameter c■9.27 ?) and non-SC samples. We verify that this AFM signal is intrinsic to(Li,Fe)OHFe Se. Thus, our observations indicate mesoscopic-to-macroscopic coexistence of an AFM state with the normal(below T_(afm)) or SC(below T_c) state in(Li,Fe)OHFe Se. We explain such coexistence by electronic phase separation, similar to that in high-T_c cuprates and iron arsenides. However, such an AFM signal can be absent in some other samples of(Li,Fe)OHFe Se, particularly it is never observed in the SC samples of T_c 38 K, owing to a spatial scale of the phase separation too small for the macroscopic magnetic probe. For this case, we propose a microscopic electronic phase separation. The occurrence of two-dimensional AFM spin fluctuations below nearly the same temperature as T_(afm), reported previously for a(Li,Fe)OHFe Se(T_c ~ 42 K) single crystal, suggests that the microscopic static phase separation reaches vanishing point in high T_c(Li,Fe)OHFe Se. A complete phase diagram is thus established. Our study provides key information of the underlying physics for high-T_c superconductivity.  相似文献   
2.
We synthesize a series of Mn substituted(Li, Fe)OHFeSe superconductor single crystals via a modified ion-exchange method, with the Mn concentration z(the atomic ratio of Mn:Se) ranging from 0 to 0.07. The distribution homogeneity of the Mn element incorporated into the lattice of(Li, Fe)OHFeSe is checked by combined measurements of high-angleannular-dark-field(HAADF) imaging and electron energy-loss spectroscopy(EELS). Interestingly, we find that the superconducting transition temperature T_c and unit cell parameter c of the Mn-doped(Li, Fe)OHFeSe samples display similar V-shaped evolutions with the increasing dopant concentration z. We propose that, with increasing doping level, the Mn dopant first occupies the tetrahedral sites in the(Li, Fe)OH layers before starting to substitute the Fe element in the superconducting Fe Se layers, which accounts for the V-shaped change in cell parameter c. The observed positive correlation between the T_c and lattice parameter c, regardless of the Mn doping level z, indicates that a larger interlayer separation, or a weaker interlayer coupling, is essential for the high-T_c superconductivity in(Li, Fe)OHFeSe. This agrees with our previous observations on powder, single crystal, and film samples of(Li, Fe)OHFeSe superconductors.  相似文献   
3.
Large superconducting Fe Se crystals of(001) orientation have been prepared via a hydrothermal ion release/introduction route for the first time. The hydrothermally derived Fe Se crystals are up to 10 mm×5 mm×0.3 mm in dimension. The pure tetragonal FeSe phase has been confirmed by x-ray diffraction(XRD) and the composition determined by both inductively coupled plasma atomic emission spectroscopy(ICP-AES) and energy dispersive x-ray spectroscopy(EDX). The superconducting transition of the Fe Se samples has been characterized by magnetic and transport measurements. The zero-temperature upper critical field H_(c2) is calculated to be 13.2–16.7 T from a two-band model. The normal-state cooperative paramagnetism is found to be predominated by strong spin frustrations below the characteristic temperature T_(sn), where the Ising spin nematicity has been discerned in the FeSe superconductor crystals as reported elsewhere.  相似文献   
4.
We report the success in introducing Mn into(Li_(1-_x)Fe_x)OHFe_(1-y) Se superconducting crystals by applying two different hydrothermal routes, ion e_xchange(1-step) and ion release/introduction(2-step). The micro-region _x-ray diffraction and energy dispersive _x-ray spectroscopy analyses indicate that Mn has been doped into the lattice, and its content in the 1-step fabricated sample is higher than that in the 2-step one. Magnetic susceptibility and electric transport properties reveal that Mn doping influences little on the superconducting transition, regardless of 1-step or 2-step routes. By contrast, the characteristic temperature T*, at which the negative Hall coefficient reaches its minimum, is significantly reduced by Mn doping.This implies that the hole carriers contribution is obviously modified, and hence the hole band might have no direct relationship with the superconductivity in(Li_(1-_x)Fe_x)OHFe_(1-y) Se superconductors. Our present hydrothermal methods of ion e_xchange and ion release/introduction provide an efficient way for elements substitution/doping into(Li_(1-_x)Fe_x)OHFe_(1-y) Se superconductors, which will promote the in-depth investigations on the role of multiple electron and hole bands and their interplay with the high-temperature superconductivity in the FeSe-based superconductors.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号