首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   2篇
  国内免费   54篇
化学   69篇
数学   1篇
物理学   3篇
  2013年   5篇
  2012年   3篇
  2011年   8篇
  2010年   3篇
  2009年   11篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2005年   4篇
  2004年   7篇
  2003年   2篇
  2002年   8篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1998年   4篇
  1997年   3篇
  1996年   1篇
  1984年   1篇
  1983年   1篇
排序方式: 共有73条查询结果,搜索用时 21 毫秒
1.
采用两步还原法制得Co@Pt/C核壳结构催化剂, 其中Co与Pt 的总质量分数为20%. 通过改变金属前驱体的用量, 制备了不同Co:Pt 原子比的Co@Pt/C 催化剂, 以20% (w) Co@Pt(1:1)/C 与20% (w) Co@Pt(1:3)/C 表示. 采用透射电镜(TEM)、光电子射线能谱分析(XPS)、循环伏安(CV)、线性扫描伏安(LSV)等方法考察了其结构与性能, 并与实验室早先制备的40% (w) Co@Pt/C 催化剂进行了比较. 自制20% Co@Pt(1:1)/C 与20% Co@Pt(1:3)/C 催化剂的金属颗粒直径约为2.2-2.3 nm, 在碳载体上分散均匀, 粒径分布范围较窄, 电化学活性比表面积(ECSA)分别为56 和60 m2·g-1, 均超过商用催化剂20% Pt/C(E-tek) (ECSA=54 m2·g-1). 20%Co@Pt(1:1)/C 与20% Co@Pt(1:3)/C 的半波电位相较于40% Co@Pt(1:1)/C 和40% Co@Pt(1:3)/C 均向正向移动, 表现出更好的氧还原(ORR)催化活性, 并有望降低催化剂的成本, 在质子交换膜燃料电池领域表现出良好的应用前景.  相似文献   
2.
通过在不同浓度KOH溶液中进行掺杂,制备出了聚乙烯醇(PVA)、聚乙烯醇/聚乙烯吡咯烷酮(PVA/PVP)和聚乙烯醇/聚乙二醇二甲醚(PVA/PEGDE)碱性聚合物电解质膜详细考察了膜的外观形貌、微观结构、热稳定性、离子电导率和化学稳定性等.结果表明,PVA与PVP以及PEGDE具有很好的相容性,所制备的复合膜断面致密...  相似文献   
3.
采用一步沉淀法,制备了纳米级Pt-CeO2/C电催化剂.透射电镜和X射线衍射表征结果表明,制备的催化剂Pt颗粒均匀分散于碳载体表面,其粒径主要分布于1.5~2.5 nm.将Pt-CeO2/C催化剂制备成质子交换膜燃料电池膜电极,经循环伏安和单电池极化曲线测试发现,Pt-CeO2/C催化剂性能与Pt/C催化剂的相当.一氧...  相似文献   
4.
纳米碳纤维载铂作为质子交换膜燃料电池阳极催化剂   总被引:1,自引:0,他引:1  
采用化学还原法合成了微结构不同的纳米碳纤维(板式、鱼骨式、管式)载铂催化剂(分别记为Pt/p-CNF、Pt/f-CNF、Pt/t-CNF). 通过高分辨透射电镜(HRTEM)和X射线衍射(XRD)等分析技术对催化剂的微观结构进行了表征, 并利用循环伏安(CV)法分析了催化剂的电化学比表面积(ESA). 在此基础上, 制备了膜电极(MEA), 通过单电池测试了催化剂的电催化性能. 结果表明: 铂纳米粒子在不同的纳米碳载体上表现出不同的粒径, 在板式、鱼骨式和管式纳米碳纤维上的铂纳米粒子平均粒径分别为2.4、2.7和2.8 nm. 板式纳米碳纤维载铂催化剂作单电池阳极时表现出良好的电催化性能, 其对应的最高功率密度可达0.569 W·cm-2, 高于鱼骨式纳米碳纤维载铂催化剂和管式纳米碳纤维载铂催化剂对应的最高功率密度(分别为0.550和0.496 W·cm-2). 同时, 也制备了碳黑(Pt/XC-72)载铂催化剂. 相比于Pt/XC-72, 纳米碳纤维载体上的铂纳米颗粒有较小的粒径、较好的分散和较高的催化活性, 说明纳米碳纤维是质子交换膜燃料电池(PEMFCs)催化剂的良好载体.  相似文献   
5.
富氢气氛下CO选择性氧化催化剂Pt/γ-Al2O3中添加钴的作用   总被引:8,自引:0,他引:8  
严菁  马建新  周伟 《化学学报》2004,62(21):2143-2149
研究了Pt/γ-Al2O3催化剂上添加Co对降低Pt负载量的效应,同时通过XRD,CO-TPD,H2-TPR和FTIR等手段对Co助催的Pt/γ-Al2O3催化剂进行了表征,藉此探讨了Co的改性作用.实验结果表明,在Pt/γ-Al2O3催化剂中添加Co可显著降低Pt的用量和改善低温活性.在Pt负载量为wPt=0.01,Co添加量为wCo=0.015~0.03时,在ψO2CO=1.0和120℃的较低温度下,CO转化率和O2选择性分别高达99%和47%以上.在Pt/γ-Al2O3催化剂中添加的Co以不完全还原的CoOx形态存在,不仅可以提供活泼氧与CO反应生成CO2,而且影响Pt的电子性能,使之较难还原.Co的引入还削弱了CO在Pt上的吸附,使CO线式吸附物种消失,同时使碳酸氢盐和甲酸盐吸附物种增加.随温度升高,Co/Pt/γ-Al2O3催化剂上碳酸氢盐物种消失并转化成CO2.  相似文献   
6.
以CTMABr和CTMAOH为共模板剂合成MCM-41   总被引:5,自引:0,他引:5  
采用共模板剂水热合成了MCM-41.分别用X射线粉末衍射(XRD)、固体核磁共振(27AlMASNMR)和N2吸附等温线技术考察了用该方法和传统方法所制备的Si-MCM-41和Al-MCM-41样品的晶相结构、孔结构以及Al在分子筛中的化学环境.结果表明,用共模板剂方法合成的MCM-41样品,其纯度和孔径均一性显著提高,特别是当样品中Al含量较高时,仍可保证Al原子以四配位结合在MCM-41的硅骨架上.还就采用共模板剂的理论依据进行了讨论.  相似文献   
7.
考察了稀土系列氧化物作为CO同步还原SO2和NO催化剂的活性.结果表明,氧化钐和氧化钕表现了最高的活性,在475℃,SO2和NO的转化率同时超过95%.实验发现稀土氧硫化物是活性相.通常脱硫活性高的样品同样具有高的脱氮活性,但CeO2表现了不同的行为,其脱硫活性虽低,但脱氮活性却较高.文中还对同步反应的机理作了探讨,发现COS不仅是还原SO2的中间物,同时也是还原NO的中间物.结合活性相和反应机理对不同稀土氧化物的活性差异作了讨论.  相似文献   
8.
使用自制的钴催化裂解碳氢气法制备多壁纳米碳管,并对其进行退火、掺杂等一系列预处理,然后使用高压高纯氢源,在中压(12 MPa)和室温条件下,进行钾掺杂多壁纳米碳管的储氢性能实验.结果表明:预处理对纳米碳管的储氢性能有很大影响.实验条件下,经过氮气退火,并在1.0 mol/L硝酸钾溶液中掺杂的多壁纳米碳管吸氢量最大(H/C质量分数为3.2%).上述样品在室温下的放氢量一般不超过其吸氢量的50.8%.  相似文献   
9.
通过共沉淀法和沉积-沉淀法制备出了具有良好热稳定性的Al2O3改性Fe2O3基金催化剂, 并通过透射电镜(TEM)、X射线衍射(XRD)、N2吸附-脱附及热重和差示扫描量热(TG-DSC)分析等表征手段对催化剂的结构与表面形貌进行了研究分析. TEM测试结果表明: 500 ℃焙烧后, 未掺杂Al2O3的催化剂中金颗粒粒径分布较宽, 平均粒径约为7.0 nm, 载体颗粒尺寸在50-100 nm范围内; 而掺杂Al2O3的催化剂中金颗粒粒径分布变窄, 平均粒径约为5.0 nm, 且载体颗粒大小也明显小于未掺杂Al2O3的催化剂, 保持在30-50 nm的范围内. N2吸附-脱附测试结果表明, Al2O3的掺杂有利于保持催化剂的介孔结构和比表面积, 从而提高了载体的热稳定性. XRD和TG-DSC测试结果表明, Al2O3的掺杂可以有效地抑制Fe2O3的结晶, 进而抑制了高温焙烧过程中金颗粒的长大. 选用CO低温氧化反应对催化剂的活性进行了评价, 即使在500 ℃高温下焙烧12 h, 掺杂了Al2O3的催化剂仍然可在26.7 ℃将CO完全转化, 而未掺杂Al2O3的催化剂CO最低完全转化温度(T100)高达61.6 ℃. Al2O3的掺杂显著提高了催化剂的热稳定性能.  相似文献   
10.
甲烷干重整催化剂Ni/Al2O3表面积炭表征与分析   总被引:4,自引:0,他引:4  
用蒸发法制备了Ni/Al2O3催化剂及浸渍法制备了Ni/α-Ni/Al2O3和Ni/γ-Al2O3催化剂,并与商品天然气水蒸气重整催化剂Z118Y一起进行了甲烷干重整实验,考察了各催化剂上表面积炭行为.通过H2程序升温还原(H2-TPR)、BET(Brunauer-Emmett-Teller)比表面积分析、X射线衍射(XRD)、透射电镜(TEM)、热重-差式扫描量热(TG-DSC)、程序升温氧化(TPH)等表征手段对催化剂表而沉积炭的特性进行了表征.结果表明,各催化剂上至少存在三种形式的碳物种:无定形碳、丝状碳及石墨碳.由于载体性质不同,各催化剂上沉积炭的种类及其含量有所差别.Z118Y、Ni/Al2O3及Ni/α-Al2O3催化剂上主要沉积丝状炭,而Ni/γ-Al2O3催化剂上则主要是石墨碳.Ni/γ-Al2O3催化剂中金属Ni颗粒较小(小于15 nm)、粒径分布范围较窄、分散性较好,能减少催化剂表面炭的沉积,有效地抑制丝状碳的生长.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号