首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   6篇
物理学   9篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2011年   1篇
  2010年   2篇
  2004年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
基于已有典型工业挥发性有机物甲苯设计的一套冷凝法回收系统,对其进行数值模拟和优化设计。运用物性软件REFPROP对甲苯负荷及制冷系统性能进行了模拟。通过对系统的模拟计算,研究了冷却级蒸发温度、冷凝温度以及甲苯混合气体入口温度对该冷凝法甲苯回收系统的性能影响,并针对冷却级温度影响进行了经济性分析。在此基础上,提出了冷量回收的优化方案,并与原有方案进行了对比分析,为进一步优化设计提供了理论依据。优化结果表明:系统预冷级负荷降低69.6%,系统的能耗降低38.9%,COP增大61.4%,压缩机排气温度下降7.7℃。  相似文献   
2.
王振  甘林  汪静静  柳菲  郑新 《发光学报》2016,37(6):731-736
制备了结构为ITO/NPB/TCTA/FIrpic∶TCTA/Ir(MDQ)2(acac)∶TmPyPB/FIrpic∶TmPyPB/TmPyPB/LiF/Al的有机电致磷光发光器件。通过在双蓝光发光层之间插入较薄的红光层Ir(MDQ)2(acac)∶TmPyPB调节载流子、激子在各发光层中的分布,并结合TCTA和TmPyPB对发光层内载流子和激子的有效阻挡作用,混合实现白光发射。研究了红光层在不同厚度、不同掺杂浓度下对器件发光性能的影响。结果表明,红光发光层厚度为2nm、质量浓度为5%时,结合蓝光发光层和红光发光层,实现了色坐标为(0.333,0.333)、最大发光效率为11.50cd/A的白光发射。  相似文献   
3.
采用甚高频等离子体增强化学气相沉积技术,在前期单室沉积的微晶硅薄膜太阳电池和非晶硅/微晶硅叠层太阳电池研究的基础上,通过对微晶硅底电池本征层硅烷浓度的优化,获得了初始效率达到11.02%(电池面积1.0 cm2)的非晶硅/微晶硅叠层太阳电池.同时,100 cm2的非晶硅/微晶硅叠层太阳电池的组件效率也达到了9.04%. 关键词: 非晶硅/微晶硅叠层电池 单室 甚高频  相似文献   
4.
王培  王振  郑新  柳菲  陈爱  谢嘉凤  王玉婵 《发光学报》2018,39(6):809-814
基于ITO/NPB/TCTA/Ir(MDQ)2(acac):TCTA/FIrpic:TmPyPb/Ir(ppy)3:TmPyPb/TmPyPb/LiF/Al结构的三原色白光器件,通过分别在蓝光与红光、绿光发光层界面处插入2 nm TCTA与2 nm TmPyPb中间层,研究了中间层的有无对器件性能的影响。结果表明,中间层的引入可以调整激子的分布,影响能量转移。具有双中间层的器件实现了高质量的白光发射,最大发光效率达到22.56 cd/A。  相似文献   
5.
融合加权均值滤波与流形重构保持嵌入的高光谱影像分类   总被引:1,自引:0,他引:1  
黄鸿  郑新磊  罗甫林 《光子学报》2016,(10):146-154
高光谱影像中波段数过多易导致"维数灾难",而传统高光谱影像维数约简算法仅利用光谱特征而忽略了空间信息.针对上述问题,提出一种融合加权均值滤波与流形重构保持嵌入的维数约简算法.该方法利用影像中地物分布的空间一致性特点,对所有像素进行加权均值滤波,消除同类光谱差异性较大的像素影响,并在流形重构过程中增大空间近邻点的权重,提取出更为有效的鉴别特征,实现维数约简.在PaviaU和Urban高光谱数据集上的实验结果表明:相比于其它相关方法,该方法能获得更高的分类准确度,在分别随机选取5%和1%的训练样本情况下,其总体分类准确度分别提高到98.76%和80.21%.该方法在发现内在低维流形结构的同时,有效融入了影像中的空间信息,改善了分类性能.  相似文献   
6.
王振  柳菲  郑新  王培  甘林  汪静静 《发光学报》2017,38(10):1332-1337
以透明导电薄膜Mo O3/Au/Mo O3代替铟锡氧化物(ITO)作为有机太阳能电池(OSCs)的阳极,研究了一系列结构为Mo O3/Au/Mo O3的透明电极和Mo O3(y nm)/Au(x nm)/Mo O3(y nm)/Cu Pc(25 nm)/C60(40nm)/BCP(8 nm)/Al(100 nm)的有机太阳能电池。研究表明,Mo O3/Au/Mo O3电极的光电特性可通过改变各层薄膜厚度加以调控,在Mo O3薄膜厚度为40 nm、Au薄膜厚度为10 nm时性能最优,且以该薄膜为电极的有机太阳能电池器件的性能接近于电极为ITO的有机太阳能电池器件。  相似文献   
7.
Nonpolar a-plane CaN films were grown on r-plane sapphire substrates by metalorganic chemical vapour deposition (MOCVD) under various conditions. The surface morphologies of epitaxial films are studied by atomic force microscopy. The pit density and size both decrease with the increasing growth temperature, decreasing growth pressure or V/Ⅲ ratio, while the roughness of the surface increases. Formation mechanisms of the pits in the films are discussed.  相似文献   
8.
张晓丹  郑新霞  许盛之  林泉  魏长春  孙建  耿新华  赵颖 《中国物理 B》2011,20(10):108801-108801
We report on the development of single chamber deposition of microcrystalline and micromorph tandem solar cells directly onto low-cost glass substrates. The cells have pin single-junction or pin/pin double-junction structures on glass substrates coated with a transparent conductive oxide layer such as SnO2 or ZnO. By controlling boron and phosphorus contaminations, a single-junction microcrystalline silicon cell with a conversion efficiency of 7.47% is achieved with an i-layer thickness of 1.2 μm. In tandem devices, by thickness optimization of the microcrystalline silicon bottom solar cell, we obtained an initial conversion efficiency of 9.91% with an aluminum (Al) back reflector without a dielectric layer. In order to enhance the performance of the tandem solar cells, an improved light trapping structure with a ZnO/Al back reflector is used. As a result, a tandem solar cell with 11.04% of initial conversion efficiency has been obtained.  相似文献   
9.
This paper investigates several pretreatment techniques used to reduce the phosphorus contamination between solar cells. They include hydrogen plasma pretreatment, deposition of a p-type doped layer, i-a-Si:H or μc-Si:H covering layer between solar cells. Their effectiveness for the pretreatment is evaluated by means of phosphorus concentration in films, the dark conductivity of p-layer properties and cell performance.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号