首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   22篇
  国内免费   20篇
化学   43篇
数学   29篇
物理学   82篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   4篇
  2019年   5篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   10篇
  2013年   4篇
  2012年   7篇
  2011年   1篇
  2010年   6篇
  2009年   6篇
  2008年   6篇
  2007年   11篇
  2006年   19篇
  2005年   6篇
  2004年   10篇
  2003年   7篇
  2001年   2篇
  2000年   6篇
  1999年   3篇
  1998年   3篇
  1997年   3篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   5篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1981年   1篇
排序方式: 共有154条查询结果,搜索用时 23 毫秒
1.
我们定义纯奇点范畴D_(psg)~b(R)为有界纯导出范畴D_(pur)~b(R)与纯投射模构成的有界同伦范畴K~b(■)的Verdier商,得到了纯奇点范畴D_(psg)~b(R)三角等价于相对纯投射模的Gorenstein范畴的稳定范畴■的一个充分必要条件.同时,还给出三角等价D_(psg)~b(R)≌D_(psg)~b(S)的充分条件,这里R和S都是环.  相似文献   
2.
通过讨论平衡对、相对于平衡对的特殊逼近和相对于平衡对的余挠对之间的关系,给出了它们的一些性质,并得到了相对完备余挠对的等价刻画.  相似文献   
3.
彭汉  刘彬  付松年  张敏明  刘德明 《物理学报》2015,64(13):134206-134206
线性光采样是一种测量基于先进调制码型的高速光信号的有效手段, 而被动锁模光纤激光器是其实施所需的关键组件. 本文在介绍线性光采样工作原理的基础上, 首次分析得到被动锁模光纤激光器重复频率与待测信号光线宽的约束关系, 对于正交相移键控(QPSK)信号, 当信号光线宽与采样光脉冲重复频率的比值小于1.5×10-3 时, 高速信号的相位噪声对线性光采样带来的损伤可以忽略不计. 利用95.984 MHz重复频率的被动锁模光纤激光器对线宽为100 kHz速率为28 Gbaud的QPSK信号开展相关实验, 通过标准数字相干接收算法可以得到与传统高速示波器相同的星座图, 理论分析与实验结果完全符合. 这一研究结果有助于线性光采样用被动锁模光纤激光器的优化设计.  相似文献   
4.
电解质作为二次电池离子传导的重要介质,对于提升二次电池循环稳定性能、安全性能等方面起着至关重要的作用.局部高浓度电解质是指在高浓度电解质中加入“稀释剂”,形成盐的局部高浓度状态,既能兼具高浓度电解质的优异特性,又具有低成本和优良润湿性的特点,应用前景非常广阔.近几年,局部高浓度电解质在阻燃锂金属电池、高电压锂电池、低温锂电池、锂硫电池和钠电池等多方面应用广泛,且展现出非常好的使用效果.本综述重点从局部高浓度电解质的功能性应用角度出发,详细阐述了局部高浓度电解质的类型、制备、作用机理及其在不同二次电池中的功能性应用进展和主要研究现状,文末还对局部高浓度电解质的未来可能发展趋势进行了分析与展望.  相似文献   
5.
微纳尺度光纤布拉格光栅折射率传感的理论研究   总被引:3,自引:0,他引:3       下载免费PDF全文
梁瑞冰  孙琪真  沃江海  刘德明 《物理学报》2011,60(10):104221-104221
亚波长直径微纳光纤强倏逝场传输的光学特性,使其对周围介质折射率的变化具有极高的灵敏度.本文提出一种基于微纳尺度光纤布拉格光栅(MNFBG)的折射率传感器,结合微纳光纤倏逝场传输和光纤布拉格光栅(FBG)强波长选择的特性来实现高精度折射率传感,对其制备可行性进行了讨论.论文中对MNFBG折射率传感机理进行了深入的理论分析,并使用OptiGrating软件进行了数值模拟,模拟数据显示MNFBG折射率测量的灵敏度随着光纤半径的减小而增加,其中光纤半径为400 nm的MNFBG灵敏度可达到993 nm/RIU,相比于包层蚀刻的FBG灵敏度增加了170倍,说明MNFBG对发展微型化、高灵敏度折射率传感器具有良好的应用前景. 关键词: 微纳光纤 光纤布拉格光栅 折射率传感  相似文献   
6.
Hongyu Ma 《中国物理 B》2021,30(8):87303-087303
The slower response speed is the main problem in the application of ZnO quantum dots (QDs) photodetector, which has been commonly attributed to the presence of excess oxygen vacancy defects and oxygen adsorption/desorption processes. However, the detailed mechanism is still not very clear. Herein, the properties of ZnO QDs and their photodetectors with different amounts of oxygen vacancy (VO) defects controlled by hydrogen peroxide (H2O2) solution treatment have been investigated. After H2O2 solution treatment, VO concentration of ZnO QDs decreased. The H2O2 solution-treated device has a higher photocurrent and a lower dark current. Meanwhile, with the increase in VO concentration of ZnO QDs, the response speed of the device has been improved due to the increase of oxygen adsorption/desorption rate. More interestingly, the response speed of the device became less sensitive to temperature and oxygen concentration with the increase of VO defects. The findings in this work clarify that the surface VO defects of ZnO QDs could enhance the photoresponse speed, which is helpful for sensor designing.  相似文献   
7.
提出了一种纳米厚度金属层连接的级联亚波长平面介质光栅三明治结构,利用该结构中纳米金属连接层上下界面处的表面等离子共振的互作用形成多波长共振的特点设计了适用于光通信波段(1 300~1 600nm)高性能的宽带偏振器和宽带偏振分束器。利用严格耦合波理论分析发现偏振分束器带宽主要由金属连接层厚度控制,光栅厚度基本不影响偏振分束器带宽,只影响共振深度和共振波长。该结论为后续的制备提供了理论指导和借鉴作用。  相似文献   
8.
超导单光子探测技术是基于超薄超导薄膜的非平衡态热电子效应的一种新型的单光子探测方法。超导单光子探测器(SNSPD)的计数率可达到GHz,时间抖动小于100ps,因而在未来量子通信系统中有着广阔的应用前景。介绍了NbN超导单光子探测器件的工作原理和器件超导性能测试系统;测试了超导单光子探测器件的电阻-温度、电流-电压等特性。并对测试结果进行了分析和讨论。  相似文献   
9.
一类系统的极限环讨论   总被引:4,自引:0,他引:4  
刘德明 《数学季刊》1990,5(3):20-28
文[1]研究了二次系统 dx/dt=-y+dx+x~2+dxy-y~2 dy/dt=x·(1+ax+y)证明了ad≤0或ad≥3时,(E_2)无围绕原点的极限环,0相似文献   
10.
提出了一种基于LabVIEW的无源器件光谱测试方案.通过LabVIEW编程控制可调谐激光器、可编程光滤波器、光功率计和数据采集平台,获得了具有不同传递函数的光谱特性.实验中激光器的扫描速度为10nm/s,扫描范围为10nm,数据采集卡的采样速率为1MS/s,结果表明:单个器件的光谱测试可以在1s内完成,光谱分辨率可达1pm;与利用宽带光源和光谱分析仪的传统光谱测试方法相比,所提方案的测试性能可达到传统方案水平,且能显示更精细的光谱细节.该方案能应用于有高分辨率、快速和高效要求的光谱测试中.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号