首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   4篇
物理学   6篇
  2019年   1篇
  2014年   3篇
  2013年   2篇
排序方式: 共有6条查询结果,搜索用时 109 毫秒
1
1.
The China Accelerator Driven Subcritical System (China-ADS) project, which is a strategic plan and aims to design and build an ADS demonstration facility, has been proposed and launched actively in China. Injector Ⅱ as one of the parallel injectors of China-ADS, and is prompted by the Institute of Modern Physics (IMP). In this paper, a new scheme with full period lattice structure for the SC section is proposed. In the new scheme, there are sixteen periods, with one superconducting solenoid and one superconducting cavity included in each period. All of the elements are contained in four cryomodules. The dreadful influence of the mismatch caused by period structural change can be avoided, and the beam quality is favorable. In addition, this new scheme has certain advantages in reducing the project's difficulty and construction risk. The details of the design and beam dynamic simulation for the full period lattice structure are given in this paper.  相似文献   
2.
The China Accelerator Driven Subcritical System (China-ADS) project, which is a strategic plan and aims to design and build an ADS demonstration facility, has been proposed and launched actively in China. Injector Ⅱ as one of the parallel injectors of China-ADS, and is prompted by the Institute of Modern Physics (IMP). In this paper, a new scheme with full period lattice structure for the SC section is proposed. In the new scheme, there are sixteen periods, with one superconducting solenoid and one superconducting cavity included in each period. All of the elements are contained in four eryomodules. The dreadful influence of the mismatch caused by period structural change can be avoided, and the beam quality is favorable. In addition, this new scheme has certain advantages in reducing the project's difficulty and construction risk. The details of the design and beam dynamic simulation for the full period lattice structure are given in this paper.  相似文献   
3.
The InjectorⅡ, one of the two parallel injectors of the high-current superconducting proton driver linac for the China Accelerator-Driven System (C-ADS) project, is being designed and constructed by the Institute of Modern Physics. At present, the design work for the injector is almost finished. End-to-end simulation has been carried out using the TRACK multiparticle simulation code to check the match between each acceleration section and the performance of the injector as a whole. Moreover, multiparticle simulations with all kinds of errors and misalignments have been performed to define the requirements of each device. The simulation results indicate that the lattice design is robust. In this paper, the results of end-to-end simulation and error simulation with a 3-D field map are presented.  相似文献   
4.
A new compact accelerating structure named Hybrid RFQ is proposed to accelerate a high-intensity low-energy heavy ion beam in HISCL (High Intensive heavy ion SuperConducting Linear accelerator), which is an injector of HIAF (Heavy Ion Advanced Research Facility). It is combined by an alternative series of acceleration gaps and RFQ sections. The proposed structure has a high accelerating ability compared with a conventional RFQ and is more compact than traditional DTLs. A Hybrid RFQ is designed to accelerate 238U34+ from 0.38 MeV/u to 1.33 MeV/u. The operation frequency is described to be 81.25 MHz at CW (continuous wave) mode. The design beam current is 1.0 mA. The results of beam dynamics and RF simulation of the Hybrid RFQ show that the structure has a good performance at the energy range for ion acceleration. The emittance growth is less than 5% in both directions and the RF power is less than 150 kW. In this paper, the results of beam dynamics and RF simulation of the Hybrid RFQ are presented.  相似文献   
5.
The Intensity Heavy Ion Superconducting Linear Accelerator as the injector of the High Intensity Heavy-Ion Accelerator Facility, which is a new project proposed in China has been designed. One of the design options in the low energy part is based on Quarter Wave Resonators (QWRs). However, because of the unsymmetrical geometry of the cavity, there are dipole fields near the beam hole, which may steer the beam vertically, thus leading to emittance growth and beam loss. The effect of the dipole mode field is analyzed, and a method to overcome the beam steering effect by placing QWRs with opposite orientation is proposed in this paper. The simulation results show that the beam steering effect is reduced effectively by this method, and the deviation of the beam centroid is decreased from 2.87 mm to 0.1 mm. The emittance growth is also smaller.  相似文献   
6.
加速器驱动次临界装置(ADS)对加速器运行稳定性和失束指标提出了前所未有的要求。对于超导直线加速器的研究发现,超导腔失效是失束的一个较大的来源,故针对超导腔的失效情况,本文提出分段补偿新方法,以提高高功率超导直线加速器的运行稳定性。提出的分段补偿方法与已有的全局补偿和局部补偿的方法相比,在保证加速器出口束流品质与无束损束流传输的同时,分段补偿束流能量,优化了参与能量补偿的超导腔数量,降低超导腔的备份功率源需求。论文最后针对CiADS的超导直线加速器的物理设计,做了分段补偿的多粒子模拟。结果表明,采用了分段补偿方法实现超导腔失效补偿的前提下,参与补偿过程中改变腔压的超导腔数量比例为48%,对功率源总的功率备份冗余需求小于20%。The accelerator driven subcritical system (ADS) has put forward unprecedented demands on the stability and beam trip of the accelerator operation. Depending on analysis, failure of the superconducting cavities is a major cause for beam trip of the superconducting cavity. Therefore, a new method of piecewise compensation is proposed to improve the stability of high power superconductivity linac. The piecewise compensation scheme proposed in this paper is compared with the existing global compensation and local compensation technology. While guaranteeing the beam quality of the accelerator and without beam loss transmission, the piecewise compensation method can optimize the number of superconducting cavities involved in energy compensation and reduce the demand for the backup redundancy of power sources of the superconducting cavities. At the end of the paper, the multi-particle simulation of piecewise compensation aims at the physical design of CiADS superconducting linac. The result shows that 48% of superconducting cavities modify the cavity's Epeak during the compensation process and the demanded redundancy of total power sources is less than 20% under the premise of successful compensation for the failure of superconducting cavities through the piecewise compensation method.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号