首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   23篇
  国内免费   2篇
晶体学   6篇
物理学   24篇
  2022年   1篇
  2021年   2篇
  2019年   3篇
  2018年   5篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2009年   4篇
  2007年   1篇
排序方式: 共有30条查询结果,搜索用时 46 毫秒
1.
Large diamond crystals were successfully synthesized by a FeNi-C system using the temperature gradient method under high-pressure high-temperature conditions. The assembly of the growth cell was improved and the growth process of diamond was investigated. Effects of the symmetry of the carbon convection field around the growing diamond crystal were investigated systematically by adjusting the position of the seed crystal in the melted catalyst/solvent. The results indicate that the morphologies and metal inclusion distributions of the synthetic diamond crystals vary obviously in both symmetric and non-symmetric carbon convection fields with temperature. Moreover, the finite element method was applied to analyze the carbon convection mode of the melted catalyst/solvent around the diamond crystal. This work is helpful for understanding the growth mechanism of diamond.  相似文献   
2.
胡美华  毕宁  李尚升  宿太超  李小雷  胡强  贾晓鹏  马红安 《物理学报》2013,62(18):188103-188103
对国产六面顶压机平台下使用多晶种法合成宝石级金刚石单晶进行了系统的研究. 通过合理调整温度梯度法的合成腔体组装, 采用多晶种法, 探索多晶种法金刚石合成的压力和温度区间, 在单个合成腔体内放置3–5颗金刚石晶种, 成功合成出多颗(3–5)优质Ib型宝石级金刚石单晶. 多颗晶种的引入, 单次实验合成的多个金刚石晶体晶形及品质一致; 同时, 晶体的整体生长速度也有明显的增大. 多晶种法金刚石单晶合成的研究, 可以有效地利用腔体空间、提高单次金刚石单晶合成的效率, 解决压机大型化下高温高压资源利用率低的问题; 同时, 为宝石级金刚石单晶商业化生产提供重要的依据. 关键词: 金刚石 国产六面顶 多晶种 温度梯度法  相似文献   
3.
在6 GPa和1500 ℃的压力和温度范围内, 利用高压熔渗生长法制备了纯金刚石聚晶, 深入研究了高温高压下金刚石聚晶生长过程中碳的转化机制. 利用光学显微镜、X-射线衍射、场发射扫描电子显微镜检测, 发现在熔渗过程中金刚石层出现了石墨化现象, 在烧结过程中金刚石颗粒表面形貌发生了变化. 根据实验现象分析, 在制备过程中存在三种碳的转化机制: 1)金属熔渗阶段金刚石颗粒表面石墨化产生石墨; 2)产生的石墨在烧结阶段很快转变为填充空隙的金刚石碳; 3)金刚石直接溶解在金属溶液中, 以金刚石形式在颗粒间析出, 填充空隙. 本文研究碳的转化机制为在高温高压金属溶剂法合成金刚石的条件下(6 GPa和1500 ℃的压力和温度范围内)工业批量化制备无添加剂、无空隙的纯金刚石聚晶提供了重要的理论指导.  相似文献   
4.
A series of diamonds with boron and sulfur co-doping were synthesized in the Fe Ni Mn Co-C system by temperature gradient growth(TGG) under high pressure and high temperature(HPHT). Because of differences in additives, the resulting diamond crystals were colorless, blue-black, or yellow. Their morphologies were slab, tower, or minaret-like. Analysis of the x-ray photoelectron spectra(XPS) of these diamonds shows the presence of B, S, and N in samples from which N was not eliminated. But only the B dopant was assuredly incorporated in the samples from which N was eliminated. Resistivity and Hall mobility were 8.510 ?·cm and 760.870 cm~2/V·s, respectively, for a P-type diamond sample from which nitrogen was eliminated. Correspondingly, resistivity and Hall mobility were 4.211×10~5 ?·cm and 76.300 cm~2/V·s for an N-type diamond sample from which nitrogen was not eliminated. Large N-type diamonds of type Ib with B–S doping were acquired.  相似文献   
5.
The large single-crystal diamond with FeS doping along the(111) face is synthesized from the FeNi–C system by the temperature gradient method(TGM) under high-pressure and high-temperature(HPHT). The effects of different FeS additive content on the shape, color, and quality of diamond are investigated. It is found that the(111) face of diamond is dominated and the(100) face of diamond disappears gradually with the increase of the FeS content. At the same time, the color of the diamond crystal changes from light yellow to gray-green and even gray-yellow. The stripes and pits corrosion on the diamond surface are observed to turn worse. The effects of FeS doping on the shape and surface morphology of diamond crystal are explained by the number of hang bonds in different surfaces of diamond. It can be shown from the test results of the Fourier transform infrared(FTIR) spectrum that there exists an S element in the obtained diamond. The N element content values in different additive amounts of diamond are calculated. The XPS spectrum results demonstrate that our obtained diamond contains S elements that exist in S–C and S–C–O forms in a diamond lattice. This work contributes to the further understanding and research of FeS-doped large single-crystal diamond characterization.  相似文献   
6.
利用高温高压方法在2 ~ 5.0 GPa和900 K的合成条件下成功合成出系列立方相Sm填充型方钴矿化合物SmxCo4Sb12 ( x= 0.2, 0.6, 0.8 ) 体热电材料,并系统地研究了合成压力及不同的Sm填充分数对其室温下的电输运特性(电阻率、Seebeck系数、功率因子)的影响. 研究结果表明, Sm填充型方钴矿化合物SmxCo4Sb12为n型半导体. 在不同压力下,随着Sm填充分数的增加,Seebeck系数的绝对值和电阻率均呈现降低趋势. 在2 GPa,900 K条件下合成的Sm0.8Co4Sb12化合物功率因子达到最大值5.88 μW /( cm·K2).  相似文献   
7.
 利用高压合成方法,在压力为2 GPa、温度为900 K的条件下,以NaN3作为添加剂,成功地合成出了Na填充型的方钴矿化合物CoSb3。X射线衍射(XRD)研究结果表明,当Na填充量达80%时,合成的Na填充型方钴矿化合物CoSb3仍为单相方钴矿结构,没有Na和NaN3等杂质峰。在室温下对不同Na填充量的样品进行了电阻率(ρ)和Seebeck系数(α)的测试,研究了不同Na填充量对样品电阻率、Seebeck系数和功率因子(α2σ)的影响。研究结果表明:室温下,样品的电导率随Na填充量的增加而增大,Seebeck系数的绝对值随Na填充量的增加而减小。当Na填充量为0.4时,样品获得了最高的功率因子(8.72 μW·cm-1·K-2),此值高于He等报道的利用热压法制备的CoSb3的值。填充量对样品电输运特性的影响规律与Pei等研究的K填充型CoSb3的研究结果相一致。上述研究结果表明,高压合成技术有利于提高填充型方钴矿化合物的填充量,并有效地提高样品的电输运特性。  相似文献   
8.
Large diamonds have successfully been synthesized from FeNiMnCo-S-C system at temperatures of 1255-1393 ℃and pressures of 5.3-5.5 GPa.Because of the presence of sulfur additive,the morphology and color of the large diamond crystals change obviously.The content and shape of inclusions change with increasing sulfur additive.It is found that the pressure and temperature conditions required for the synthesis decrease to some extent with the increase of S additive,which results in left down of the V-shape region.The Raman spectra show that the introduction of additive sulfur reduces the quality of the large diamond crystals.The x-ray photoelectron spectroscopy(XPS) spectra show the presence of S in the diamonds.Furthermore,the electrical properties of the large diamond crystals are tested by a four-point probe and the Hall effect method.When sulfur in the cell of diamond is up to 4.0 wt.%,the resistance of the diamond is 9.628×10~5 Ω·cm.It is shown that the large single crystal samples are n type semiconductors.This work is helpful for the further research and application of sulfur-doped semiconductor large diamond.  相似文献   
9.
Large diamond crystals were successfully synthesized by FeNi-C system using temperature gradient method under high-pressure high-temperature conditions. The assembly of the growth cell was improved and the growth process of diamond was investigated. Effects of the symmetry of carbon convection field around the growing diamond crystal were investigated systematically by adjusting the position of seed crystal in the melted catalyst/solvent. The results indicate that morphologies and metal inclusion distributions of the synthetic diamond crystals vary obviously in both symmetric and non-symmetric carbon convection fields with temperature. Moreover, finite element method was applied to analyze carbon convection mode of the melted catalyst/solvent around the diamond crystal. This work is helpful for understanding the growth mechanism of diamond.  相似文献   
10.
High-quality p-type boron-doped IIb diamond large single crystals are successfully synthesized by the temperature gradient method in a china-type cubic anvil high-pressure apparatus at about 5.5 GPa and 1600 K.The morphologies and surface textures of the synthetic diamond crystals with different boron additive quantities are characterized by using an optical microscope and a scanning electron microscope respectively.The impurities of nitrogen and boron in diamonds are detected by micro Fourier transform infrared technique.The electrical properties including resistivities,Hall coefficients,Hall mobilities and carrier densities of the synthesized samples are measured by a four-point probe and the Hall effect method.The results show that large p-type boron-doped diamond single crystals with few nitrogen impurities have been synthesized.With the increase of quantity of additive boron,some high-index crystal faces such as {113} gradually disappear,and some stripes and triangle pits occur on the crystal surface.This work is helpful for the further research and application of boron-doped semiconductor diamond.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号