首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   814篇
  免费   23篇
  国内免费   2篇
化学   744篇
晶体学   4篇
力学   5篇
数学   22篇
物理学   64篇
  2023年   2篇
  2022年   5篇
  2021年   10篇
  2020年   10篇
  2019年   9篇
  2018年   7篇
  2017年   11篇
  2016年   10篇
  2015年   10篇
  2014年   33篇
  2013年   45篇
  2012年   59篇
  2011年   72篇
  2010年   22篇
  2009年   41篇
  2008年   60篇
  2007年   53篇
  2006年   58篇
  2005年   56篇
  2004年   46篇
  2003年   38篇
  2002年   45篇
  2001年   8篇
  2000年   8篇
  1999年   4篇
  1998年   11篇
  1997年   4篇
  1996年   5篇
  1995年   9篇
  1994年   8篇
  1993年   11篇
  1992年   5篇
  1990年   3篇
  1989年   5篇
  1987年   2篇
  1986年   3篇
  1985年   5篇
  1984年   3篇
  1983年   3篇
  1982年   3篇
  1980年   5篇
  1979年   6篇
  1978年   2篇
  1976年   2篇
  1974年   2篇
  1973年   2篇
  1969年   2篇
  1966年   4篇
  1965年   3篇
  1962年   1篇
排序方式: 共有839条查询结果,搜索用时 109 毫秒
1.

The adsorption and photocatalytic degradation of Ethyl methylphosphonate (EMPA) on powdery TiO2 film has experimentally investigated using attenuated total reflection-infrared Fourier transform spectroscopy (ATR-FTIR) in ambient condition. Characteristic IR frequency as P-O-C vibration mode as EtO was observed by EMPA adsorbed at the surface of TiO2. By TiO2 photocatalysis, the adsorbed EMPA was decomposed to methyl phosphonic acid and phosphoric acid. The increment of IR intensity of which is assigned to Ti–O-P-O-Ti of EMPA was accompanied with increasing the IR peak intensity assigned to MPA. About that, we suggest that the appearance of the Ti–O-P-O-Ti of EMPA by the TiO2 photocatalysis is regarded as acceleration of the hydrolysis of EMPA by the surface OH groups of TiO2. The plausible adsorption structure and the photocatalytic reaction mechanism of EMPA at the surface of TiO2 photocatalyst were elucidated.

  相似文献   
2.
The molecular orientation and strain‐induced crystallization of synthetic rubbers—polyisoprene rubber, polybutadiene rubber, and butyl rubber [poly(isobutylene isoprene)]—during uniaxial deformation were studied with in situ synchrotron wide‐angle X‐ray diffraction. The high intensity of the synchrotron X‐rays and the new data analysis method made it possible to estimate the mass fractions of the strain‐induced crystals and amorphous chain segments in both the oriented and unoriented states. Contrary to the conventional concept, the majority of the molecules (50–75%) remained in an unoriented amorphous state at high strains. Each synthetic rubber showed a different behavior of strain‐induced crystallization and molecular orientation during extension and retraction. Our results confirmed the occurence of strain‐induced networks in the synthetic rubbers due to the inhomogeneity of the crosslink distribution. The strain‐induced networks containing microfibrillar crystals and oriented amorphous tie chains were responsible for the ultimate mechanical properties. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 956–964, 2004  相似文献   
3.
Terahertz time-domain spectroscopy (THz-TDS) is used to study the intra- and intermolecular vibrational modes of aromatic carboxylic acids, for example, o-phthalic acid, benzoic acid, and salicylic acid, which form either intra- or intermolecular hydrogen bond(s) in different ways. Incorporating the target molecules in nano-sized spaces in mesoporous silicate (SBA-16) is found to be effective for the separate detection of intramolecular hydrogen bonding modes and intermolecular modes. The results are supported by an analysis of the differences in the peak shifts, which depend on temperature, caused by the different nature of the THz absorption. Raman spectra revealed that incorporating the molecules in the nano-sized pores of SBA-16 slightly changes the molecular structures. In the future, THz-TDS using nanoporous materials will be used to analyze the intra- and intermolecular vibrational modes of molecules with larger hydrogen bonding networks such as proteins or DNA.  相似文献   
4.
Quantitative analysis of metal cation doping by solid oxide electrochemical doping (SOED) has been performed under galvanostatic doping conditions. A M–β″-Al2O3 (M=Ag, Na) microelectrode (contact radius: about 10 μm) was used as cation source to attain a homogeneous solid–solid contact between the β″-Al2O3 and doping target. In Ag doping into alkali borate glass, the measured dopant amount closely matched the theoretical value. High Faraday efficiencies of above 90% were obtained. This suggests that the dopant amount can be precisely controlled on a micromole scale by the electric charge during electrolysis. On the other hand, current efficiencies of Na doping into Bi2Sr2CaCu2Oy (BSCCO) ceramics depended on the applied constant current. Efficiencies of above 80% were achieved at a constant current of 10 μA (1.6 A cm−2). The relatively low efficiencies were explained by the saturation of BSCCO grain boundaries with Na. By contrast, excess Na was detected on the anodic surface of ceramics at a constant current of 100 μA (16 A cm−2). In the present study, we demonstrate that SOED enables micromole-scale control over dopant amount.  相似文献   
5.
A mesogenic‐type curing agent was synthesized to introduce a mesogenic group not only into epoxy resin backbones but also into the crosslink units. In the mesogenic curing agent system, the domain size became larger, and the network arrangement in each domain existed to a greater extent than that in a system cured with the ordinary diamine curing system according to the evidence from polarized optical micrographs and polarized Fourier transform infrared mapping measurements. Moreover, the fracture toughness of the system was considerably improved. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2486–2494, 2006  相似文献   
6.
Woodceramics, a carbon/carbon composite of plant-originated carbon reinforced by glassy carbon from phenolic resin, was prepared from apple pomace at carbonizing temperatures of 1073 K (AWC800) and 1473 K (AWC1200), and characterized by thermoanalytical methods and X-ray diffraction (XRD). Simultaneous differential scanning calorimetry (DSC) and thermogravimetric (TG) showed complicated overlapping reactions similar to those of coal. The initial temperature of pyrolysis was obtained by fitting logistic functions to observed TG data. The results suggested that AWC1200 contained more volatile matter than AWC800. In an inert atmosphere, complicated devolatilization takes place. In an oxidizing atmosphere, thermal change occurs roughly in four steps: desorption of physically adsorbed matter; pyrolysis into aliphatic and aromatic fragments; ignition; combustion of char. The oxidation resistance of AWC1200 was superior to AWC800.  相似文献   
7.
Sawada  Y.  Seki  S.  Sano  M.  Miyabayashi  N.  Ninomiya  K.  Iwasawa  A.  Tsugoshi  T.  Ozao  R.  Nishimoto  Y. 《Journal of Thermal Analysis and Calorimetry》2004,77(3):751-757
Tin-doped indium oxide In2O3 (indium-tin-oxide) transparent conducting films were fabricated on silicon substrates by a dip coating process. The thermal analysis of the ITO films was executed by temperature-programmed desorption (TPD) or thermal desorption spectroscopy (TDS) in high vacuum. Gas evolution from the ITO film mainly consisted of water vapor. The total amount of evolved water vapor increased on increasing the film thickness from approx. 25 to 250 nm and decreased by increasing the preparation temperature from 365 to 600°C and by annealing at the same temperature for extra 10 h. The evolution occurred via two steps; the peak temperatures for 250 nm thick films were approx. 100-120 and 205-215°C. The 25 nm thick films evolved water vapor at much higher temperatures; a shoulder at approx. 150-165°C and a peak at approx. 242°C were observed. The evolution temperatures increased by increasing the preparation and the annealing temperatures except in case of the second peak of the 25 nm thick films. The evolution of water vapor at high temperature was tentatively attributed to thermal decomposition of indium hydroxide, In(OH)3, formed on the surface of the nm-sized ITO particles. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
8.
In supramolecular chemistry, a great deal of attention has focused on regulating guest binding via an external stimulus. To utilize the same effector for both highly guest-selective positive and negative allosteric effects, however, stricter and more precise regulation of the host structure is required. A novel allosteric host 1 binds Fe(II) to afford the pseudocryptand, 1.Fe(II), which bears a cavity that is surrounded by three polyether chains in a helical fashion. The binding selectivity of 1 (Na+ > K+ > Rb+ > Cs+) is the opposite of 1.Fe(II) (Cs+ > Rb+ > K+ > Na+). Single-ion transport through a liquid membrane shows ion selectivity similar to the equilibrium constants. To the best of our knowledge, this is the first example of an allosteric recognition system, in which the same effector, that is, Fe(II), exhibits both large positive and negative allosteric effects on equilibrium and dynamic recognition events. The X-ray analysis and 1H NMR examination indicate that the combination of the macrobicyclic effect and the intramolecular interchain interactions (CH-pi interaction and steric hindrance) finely controls the positive and negative allosteric effects, which depend on the size of the guest. The helical framework opens a new general method for constructing more sophisticated, controllable receptors for helical biomolecules, for example, DNA and proteins, and helical molecular devices such as a molecular coil or spring responding to a stimulus.  相似文献   
9.
Ab initio Calculations of the isomerization reaction of diphosphene 1-sulfide (2′) to thiadiphosphirane (3′) suggest that the energy barrier of the reaction in the ground state is 25 kcal/mol and that 2′ lies 21 kcal/mol above 3′, while the calculations show that there exists one local minimum on the lowest triplet energy surface.  相似文献   
10.
Effects of metal surfaces, such as aluminium, silver and gold, on the melting behavior and thermal polymerization of long-chain diynoic acids having a diacetylene group at different positions were investigated by thermal analyses using DSC, TG and other methods. The surface effects of metals were significant in the order of Ag, Al and Au. These effects are attributable to the anchoring of carboxyl group on the surface by chemisorption, which leads to unfavorable condition for polymerization of heptadeca-2,4-diynoic acid. In the case of tricosa-10,12-diynoic acid, containing a flexible methylene chain, inserted between COOH and C≡C?C≡C groups, the anchoring of COOH on the metal surface causes rather favorable effect on the polymerization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号