首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1681篇
  免费   63篇
  国内免费   8篇
化学   1033篇
晶体学   11篇
力学   80篇
数学   94篇
物理学   534篇
  2023年   28篇
  2022年   26篇
  2021年   48篇
  2020年   38篇
  2019年   47篇
  2018年   40篇
  2017年   38篇
  2016年   69篇
  2015年   42篇
  2014年   64篇
  2013年   134篇
  2012年   120篇
  2011年   154篇
  2010年   75篇
  2009年   65篇
  2008年   86篇
  2007年   82篇
  2006年   92篇
  2005年   74篇
  2004年   55篇
  2003年   39篇
  2002年   31篇
  2001年   21篇
  2000年   14篇
  1999年   9篇
  1998年   14篇
  1997年   16篇
  1996年   24篇
  1995年   21篇
  1994年   17篇
  1993年   12篇
  1992年   15篇
  1991年   6篇
  1990年   11篇
  1989年   12篇
  1988年   8篇
  1987年   6篇
  1986年   7篇
  1985年   14篇
  1984年   12篇
  1983年   7篇
  1982年   8篇
  1981年   8篇
  1980年   7篇
  1979年   9篇
  1978年   8篇
  1976年   4篇
  1975年   5篇
  1974年   3篇
  1969年   2篇
排序方式: 共有1752条查询结果,搜索用时 203 毫秒
1.
We report a C?C bond‐forming reaction between benzyl alcohols and alkynes in the presence of a catalytic amount of KOtBu to form α‐alkylated ketones in which the C=O group is located on the side derived from the alcohol. The reaction proceeds under thermal conditions (125 °C) and produces no waste, making the reaction highly atom efficient, environmentally benign, and sustainable. Based on our mechanistic investigations, we propose that the reaction proceeds through radical pathways.  相似文献   
2.
3.
Heteroaryl boronic acids and esters are extremely important and valuable intermediates because of their wide application in the synthesis of marketed drugs and bioactive compounds. Over the last couple of decades, the construction of highly important heteroaryl carbon-boron bonds has created huge attention. The transition-metal-free protocols are more green, less sensitive to air and moisture, and also economically advantageous over the transition-metal-based protocols. The transition-metal-free C−H borylation of heteroarenes and C−X (X=halogen) borylation of heteroaryl halides represents an excellent approach for their synthesis. Also, various cyclization and alkyne activation protocols have been recently established for their synthesis. The goal of this review article is to summarize the existing literature and the current state of the art for transition-metal-free synthesis of heteroaryl boronic acid and esters.  相似文献   
4.
Supramolecular polymer co-assembly is a useful approach to modulate peptide nanostructures. However, the co-assembly scenario where one of the peptide building blocks simultaneously forms a hydrogel is yet to be studied. Herein, we investigate the co-assembly formation of diphenylalanine (FF), and Fmoc-diphenylalanine (FmocFF) within the 3D network of FmocFF hydrogel. The overlapping peptide sequence between the two building blocks leads to their co-assembly within the gel state modulating the nature of the FF crystals. We observe the formation of branched microcrystalline aggregates with an atypical curvature, in contrast to the FF assemblies obtained from aqueous solution. Optical microscopy reveal the sigmoidal kinetic growth profile of these aggregates. Microfluidics and ToF-SIMS experiments exhibit the presence of co-assembled structures of FF and FmocFF in the crystalline aggregates. Molecular dynamics simulation was used to decipher the mechanism of co-assembly formation.  相似文献   
5.
For the first time, intensification of monooleoyl glycerol (MOG) synthesis has been investigated in an ultrasonic-infrared-wave (USIRW) promoted batch reactor. Esterification of octadecanoic acid (ODA) with glycerol (Gl) has been conducted [using Amberlyst 36 wet catalyst] in three different reactors, namely traditional batch reactor (TBR), infrared wave promoted batch reactor (IRWPBR), and USIRW-promoted batch reactor (USIRWPBR) to assess the relative efficacy. The energy-efficient USIRWPBR remarkably intensifies the ODA-Gl esterification as manifested through superior ODA conversion (92.5 ± 1.25%) compared to that achieved in IRWPBR (79.8 ± 1.2%) and TBR (36.39 ± 1.25%). The most favorable reaction condition for optimum ODA conversion and maximum MOG yield was identified through statistical optimization over a selected parametric range, namely 3-5 Gl/ODA mole ratio, 0.004-0.006 g/mL Amberlyst 36 catalyst concentration, 300-700 rpm impeller speed, and 333-353 K reaction temperature. The present study also reports the formulation and validation of an innovative reaction kinetics, that is, concurrent noncatalytic and heterogeneously catalyzed (CNCHC) reaction mechanism in addition to the conventional heterogeneous kinetic models (LH and Eley-Rideal mechanisms). Under combined USIRW, the CNCHC esterification mechanism could best describe ODA-Gl esterification (R2 = 0.98) compared to LH (R2 = 0.97) and Eley-Rideal (R2 = 0.88) mechanisms. The optimal product (MOG) was characterized by differential scanning calorimetry and thermogravimetric analysis to assess its crystallization property and thermal stability for possible application as plasticizer/fuel additives.  相似文献   
6.
Poly(ethylene oxide)-b-polyhedral oligomeric silsesquioxane (PEO–POSS) mixed with lithium bis(trifluoromethanesulfonyl)imide salt is a nanostructured hybrid organic–inorganic block copolymer electrolyte that may enable lithium metal batteries. The synthesis and characteristics of three PEO–POSS block copolymer electrolytes which only differ by their POSS silica cage substituents (ethyl, isobutyl, and isooctyl) is reported. Changing the POSS monomer structure results in differences in both thermodynamics and ion transport. All three neat polymers exhibit lamellar morphologies. Adding salt results in the formation of a disordered window which closes and gives way to lamellae at higher salt concentrations. The width of disordered window decreases with increasing length of the POSS alkyl chain substituent from ethyl to isobutyl and is absent in the isooctyl sample. Rheological measurements demonstrate good mechanical rigidity when compared with similar all-organic block copolymers. While salt diffusion coefficient and current ratio are unaffected by substituent length, ionic conductivity increases as the length of the alkyl chain substituent decreases: the ethyl substituent is optimal for ion transport. This is surprising because conventional wisdom suggests that ion transport occurs primarily in the PEO-rich domains, that is, ion transport should be unaffected by substituent length after accounting for the minor change in conducting phase volume fraction. © 2020 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2020 © 2020 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 363–371  相似文献   
7.
In this work, the ternary hybrid structure VSe2/SWCNTs/rGO is reported for supercapacitor applications. The ternary composite exhibits a high specific capacitance of 450 F g−1 in a symmetric cell configuration, with maximum energy density of 131.4 Wh kg−1 and power density of 27.49 kW kg−1. The ternary hybrid also shows a cyclic stability of 91 % after 5000 cycles. Extensive density functional theory (DFT) simulations on the structure as well as on the electronic properties of the binary hybrid structure VSe2/SWCNTs and the ternary hybrid structure VSe2/SWCNTs/rGO have been carried out. Due to a synergic effect, there are enhanced density of states near the Fermi level and higher quantum capacitance for the hybrid ternary structure compared to VSe2/SWCNTs, leading to higher energy and power density for VSe2/SWCNTs/rGO, supporting our experimental observation. Computed diffusion energy barrier of electrolyte ions (K+) predicts that ions move faster in the ternary structure, providing higher charge storage performance.  相似文献   
8.
Molecular confinement plays a significant effect on trapped gas and solvent molecules. A fundamental understanding of gas adsorption within the porous confinement provides information necessary to design a material with improved selectivity. In this regard, metal–organic framework (MOF) adsorbents are ideal candidate materials to study confinement effects for weakly interacting gas molecules, such as noble gases. Among the noble gases, xenon (Xe) has practical applications in the medical, automotive and aerospace industries. In this Communication, we report an ultra-microporous nickel-isonicotinate MOF with exceptional Xe uptake and selectivity compared to all benchmark MOF and porous organic cage materials. The selectivity arises because of the near perfect fit of the atomic Xe inside the porous confinement. Notably, at low partial pressure, the Ni–MOF interacts very strongly with Xe compared to the closely related Krypton gas (Kr) and more polarizable CO2. Further 129Xe NMR suggests a broad isotropic chemical shift due to the reduced motion as a result of confinement.  相似文献   
9.
10.
Journal of Inclusion Phenomena and Macrocyclic Chemistry - A correction to this paper has been published: https://doi.org/10.1007/s10847-021-01060-y  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号