首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   964篇
  免费   89篇
  国内免费   6篇
化学   729篇
晶体学   9篇
力学   10篇
数学   95篇
物理学   216篇
  2024年   2篇
  2023年   21篇
  2022年   17篇
  2021年   34篇
  2020年   36篇
  2019年   52篇
  2018年   31篇
  2017年   37篇
  2016年   52篇
  2015年   49篇
  2014年   60篇
  2013年   90篇
  2012年   81篇
  2011年   87篇
  2010年   31篇
  2009年   28篇
  2008年   75篇
  2007年   57篇
  2006年   49篇
  2005年   31篇
  2004年   24篇
  2003年   22篇
  2002年   10篇
  2001年   7篇
  2000年   8篇
  1999年   5篇
  1998年   8篇
  1997年   2篇
  1995年   4篇
  1994年   5篇
  1993年   5篇
  1992年   4篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   4篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1969年   1篇
  1968年   2篇
排序方式: 共有1059条查询结果,搜索用时 15 毫秒
1.
Molecular Diversity - Practical synthesis and biological activities of quinazolinyl–triazinyl semicarbazides (10a–j) and quinazolinyl–triazinyl thiosemicarbazides (11a–j)...  相似文献   
2.
Energy transfer has been employed in third‐generation solar cells for the conversion of light into electrical energy. Long‐range nonradiative energy transfer from semiconductor quantum dots (QDs) to fluorophores has been demonstrated by using CdS QDs and thiophene?BODIPY (boron dipyrromethene, abbreviated as TG2). TG2 shows a broad photoluminescence (PL) spectrum, which varies with concentration. At very low concentrations, monomeric units are present; then, upon increasing the concentration, these monomers form a mixed (J‐/H‐)aggregated state. Energy transfer between the CdS QDs and TG2 was confirmed by separately investigating the interactions between CdS and the monomer of TG2 and between CdS and the aggregated states of TG2. Size‐dependent PL quenching confirmed that nonradiative Förster resonance energy transfer (FRET) from photoexcited CdS QDs to the J‐aggregate state of TG2 was the major energy‐relaxation channel, which occurred on the timescale of hundreds of fs. These results have broad applications in the field of light harvesting based on the assembly of molecular aggregates.  相似文献   
3.
The first highly enantioselective arylogous Michael reaction (AMR) of 3-unsubstituted phthalides has been described. This phase-transfer methodology, which uses catalytic amounts of KOH/18-crown-6 catalyst in mesitylene in the presence of N,O-bis(trimethylsilyl)acetamide (BSA), gives access to a broad range of 3-monosubstituted phthalides with high levels of syn diastereoselectivity and good yields, starting from 3-unsubstituted derivatives and diverse α,β-unsaturated carbonyl compounds. The reaction also applies to unactivated 3-alkyl phthalides to afford 3,3-dialkyl derivatives. A plausible mechanism has been suggested. DFT analysis of possible transition states gives a rationale of the high syn diastereoselectivity observed and its correlation with the solvent's dielectric constant.  相似文献   
4.
The work described herein compares the effect of additives (HMPA, methanol, ethylene glycol, pinacol, N-methylethanolamine) on thermal and photochemical reactions of samarium diiodide (SmI2). In thermal reactions, additives that coordinate to SmI2 induce a significant increase in reaction rate. In photochemical reactions, the presence of an electronegative atom with a highly localized negative charge on the substrate leads to a rate deceleration. In order to benefit from the columbic interaction with the positively charged samarium cation, these substrates react preferentially by an inner sphere reduction mechanism. The addition of ligands prevents this close interaction causing rate retardation. Furthermore, studies demonstrate that excited state quenching of SmII by ethylene glycol and other additives indicate that it is unlikely to be the major cause for the observed rate retardation. This effect provides a simple diagnostic tool to distinguish between an inner and an outer sphere reduction mechanism.  相似文献   
5.
Molecular confinement plays a significant effect on trapped gas and solvent molecules. A fundamental understanding of gas adsorption within the porous confinement provides information necessary to design a material with improved selectivity. In this regard, metal–organic framework (MOF) adsorbents are ideal candidate materials to study confinement effects for weakly interacting gas molecules, such as noble gases. Among the noble gases, xenon (Xe) has practical applications in the medical, automotive and aerospace industries. In this Communication, we report an ultra-microporous nickel-isonicotinate MOF with exceptional Xe uptake and selectivity compared to all benchmark MOF and porous organic cage materials. The selectivity arises because of the near perfect fit of the atomic Xe inside the porous confinement. Notably, at low partial pressure, the Ni–MOF interacts very strongly with Xe compared to the closely related Krypton gas (Kr) and more polarizable CO2. Further 129Xe NMR suggests a broad isotropic chemical shift due to the reduced motion as a result of confinement.  相似文献   
6.
Four new zinc (II) complexes [Zn (HL1H)Br2] (1), [Zn (HL1H)Cl2] (2), [Zn2(HL2)Br3] (3), and [Zn (HL2)Cl] (4) have been synthesized by adopting template synthetic strategy and utilizing two homologous Schiff base ligands (H2L1 = 4-bromo-2-{[2-(2-hydroxyethylamino)-ethylimino]-methyl}-6-methoxyphenol, H2L2 = 4-bromo-2-{[3-(2-hydroxyethylamino)propylimino]methyl}-6-methoxyphenol), differing in one -CH2- unit in the ligating backbone, by adopting template synthetic strategy. All the complexes have been characterized by single crystal X-ray diffraction analysis as well as by other routine physicochemical techniques. Ligand mediated structural variations have been observed and rationalized by density functional theoretical (DFT) calculations. Interaction of the complexes 1–4 with Bovine Serum Albumin protein (BSA) has been studied by different spectroscopic techniques. A complete thermodynamic profile (ΔHo, ΔSo and ΔGo) was evaluated initially from the change in absorption and fluorescence spectra upon addition of BSA to the complexes. Appreciable binding constant values in the range ~ 0.94–4.51 × 104 M−1 indicate efficient binding tendency of the complexes to BSA with the sequence 1 ≅ 2 > 3 ≅ 4. Circular dichroism (CD), isothermal calorimetric titration experiments, molecular docking and molecular dynamics have been performed to gain deep insight into the binding regions of complex 1 to BSA. Experimental evidences suggest an interaction of zinc complexes at the surface of BSA protein and this particular binding has been exploited to determine unknown concentration of BSA protein. For this purpose complex 1 was explored as a BSA protein quantification tool.  相似文献   
7.
Journal of Thermal Analysis and Calorimetry - In order to decrease the energy consumptions in energy conversion devices, boiling heat transfer augmentation is one of the important research...  相似文献   
8.
The synthesis of 3′-fluoro-4′-amino-hexitol nucleosides with a uracil and cytosine nucleobase was performed. The synthesis started from 1,5:2,3-dianhydro-4,6-benzylidene-allitol and afforded the target compounds in 15 steps. These protected hexitol nucleosides are valuable building blocks for the preparation of a new class of oligonucleotides.  相似文献   
9.
Living materials are created through the embedding of live, whole cells into a matrix that can house and sustain the viability of the encapsulated cells. Through the immobilization of these cells, their bioactivity can be harnessed for applications such as bioreactors for the production of high‐value chemicals. While the interest in living materials is growing, many existing materials lack robust structure and are difficult to pattern. Furthermore, many living materials employ only one type of microorganism, or microbial consortia with little control over the arrangement of the various cell types. In this work, a Pluronic F127‐based hydrogel system is characterized for the encapsulation of algae, yeast, and bacteria to create living materials. This hydrogel system is also demonstrated to be an excellent material for additive manufacturing in the form of direct write 3D‐printing to spatially arrange the cells within a single printed construct. These living materials allow for the development of incredibly complex, immobilized consortia, and the results detailed herein further enhance the understanding of how cells behave within living material matrices. The utilization of these materials allows for interesting applications of multikingdom microbial cultures in immobilized bioreactor or biosensing technologies.  相似文献   
10.
This research intends to expand a mathematical model for studying the non-Newtonian surge of blood through a hepatic artery in the presence of steno occlusive disease post-liver transplantation. Power law liquid demonstrates the non- Newtonian character of blood. The hemodynamic conduit of the fluid is altered by the occurrence of arterial stenosis. In our study, the difficulty is resolved by applying diagnostic methods with the assistance of marginal circumstances and consequences. The outcomes are explained graphically for unusual cases for such stenosis. The study design is based on a tensorial form and converts its solution using numerical and analytical techniques. Our study outcome suitably demonstrates that the mathematical model used corroborates with the clinical scenario of the patient with hepatic disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号