首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   799篇
  免费   22篇
  国内免费   2篇
化学   605篇
晶体学   15篇
力学   4篇
数学   77篇
物理学   122篇
  2023年   4篇
  2022年   5篇
  2021年   18篇
  2020年   30篇
  2019年   18篇
  2018年   10篇
  2017年   6篇
  2016年   17篇
  2015年   16篇
  2014年   9篇
  2013年   44篇
  2012年   39篇
  2011年   57篇
  2010年   34篇
  2009年   15篇
  2008年   53篇
  2007年   38篇
  2006年   52篇
  2005年   35篇
  2004年   38篇
  2003年   29篇
  2002年   25篇
  2001年   11篇
  2000年   10篇
  1999年   5篇
  1998年   5篇
  1997年   9篇
  1996年   12篇
  1995年   9篇
  1994年   4篇
  1993年   5篇
  1992年   5篇
  1991年   3篇
  1989年   11篇
  1988年   5篇
  1987年   5篇
  1986年   6篇
  1985年   10篇
  1984年   9篇
  1983年   17篇
  1982年   15篇
  1981年   10篇
  1980年   9篇
  1979年   7篇
  1978年   10篇
  1977年   7篇
  1976年   7篇
  1975年   7篇
  1974年   4篇
  1969年   2篇
排序方式: 共有823条查询结果,搜索用时 343 毫秒
1.
A new uranyl containing metal–organic framework, RPL-1 : [(UO2)2(C28H18O8)] . H2O (RPL for Radiochemical Processing Laboratory), was prepared, structurally characterized, and the solid-state photoluminescence properties explored. Single crystal X-ray diffraction data reveals the structure of RPL - 1 consists of two crystallographically unique three dimensional, interpenetrating nets with a 4,3-connected tbo topology. Each net contains large pores with an average width of 22.8 Å and is formed from monomeric, hexagonal bipyramidal uranyl nodes that are linked via 1,2,4,5-tetrakis(4-carboxyphenyl)benzene (TCPB) ligands. The thermal and photophysical properties of RPL-1 were investigated using thermogravimetric analysis and absorbance, fluorescence, and lifetime spectroscopies. The material displays excellent thermal stability and temperature dependent uranyl and TCPB luminescence. The framework is stable in aqueous media and due to the large void space (constituting 76 % of the unit cell by volume) can sequester organic dyes, the uptake of which induces a visible change to the color of the material.  相似文献   
2.
We report a C?C bond‐forming reaction between benzyl alcohols and alkynes in the presence of a catalytic amount of KOtBu to form α‐alkylated ketones in which the C=O group is located on the side derived from the alcohol. The reaction proceeds under thermal conditions (125 °C) and produces no waste, making the reaction highly atom efficient, environmentally benign, and sustainable. Based on our mechanistic investigations, we propose that the reaction proceeds through radical pathways.  相似文献   
3.
Living materials are created through the embedding of live, whole cells into a matrix that can house and sustain the viability of the encapsulated cells. Through the immobilization of these cells, their bioactivity can be harnessed for applications such as bioreactors for the production of high‐value chemicals. While the interest in living materials is growing, many existing materials lack robust structure and are difficult to pattern. Furthermore, many living materials employ only one type of microorganism, or microbial consortia with little control over the arrangement of the various cell types. In this work, a Pluronic F127‐based hydrogel system is characterized for the encapsulation of algae, yeast, and bacteria to create living materials. This hydrogel system is also demonstrated to be an excellent material for additive manufacturing in the form of direct write 3D‐printing to spatially arrange the cells within a single printed construct. These living materials allow for the development of incredibly complex, immobilized consortia, and the results detailed herein further enhance the understanding of how cells behave within living material matrices. The utilization of these materials allows for interesting applications of multikingdom microbial cultures in immobilized bioreactor or biosensing technologies.  相似文献   
4.
We have quantum chemically analyzed element−element bonds of archetypal HnX−YHn molecules (X, Y=C, N, O, F, Si, P, S, Cl, Br, I), using density functional theory. One purpose is to obtain a set of consistent homolytic bond dissociation energies (BDE) for establishing accurate trends across the periodic table. The main objective is to elucidate the underlying physical factors behind these chemical bonding trends. On one hand, we confirm that, along a period (e. g., from C−C to C−F), bonds strengthen because the electronegativity difference across the bond increases. But, down a period, our findings constitute a paradigm shift. From C−F to C−I, for example, bonds do become weaker, however, not because of the decreasing electronegativity difference. Instead, we show that the effective atom size (via steric Pauli repulsion) is the causal factor behind bond weakening in this series, and behind the weakening in orbital interactions at the equilibrium distance. We discuss the actual bonding mechanism and the importance of analyzing this mechanism as a function of the bond distance.  相似文献   
5.
Brønsted acid-catalyzed inverse-electron demand (IED) aza-Diels-Alder reactions between 2-aza-dienes and ethylene were studied using quantum chemical calculations. The computed activation energy systematically decreases as the basic sites of the diene progressively become protonated. Our activation strain and Kohn-Sham molecular orbital analyses traced the origin of this enhanced reactivity to i) “Pauli-lowering catalysis” for mono-protonated 2-aza-dienes due to the induction of an asynchronous, but still concerted, reaction pathway that reduces the Pauli repulsion between the reactants; and ii) “LUMO-lowering catalysis” for multi-protonated 2-aza-dienes due to their highly stabilized LUMO(s) and more concerted synchronous reaction path that facilitates more efficient orbital overlaps in IED interactions. In all, we illustrate how the novel concept of “Pauli-lowering catalysis” can be overruled by the traditional concept of “LUMO-lowering catalysis” when the degree of LUMO stabilization is extreme as in the case of multi-protonated 2-aza-dienes.  相似文献   
6.
7.
Reverse iodine transfer polymerisation (RITP) is a living radical polymerisation technique that has shown to be feasible in synthesising segmented styrene-acrylate copolymers. Polymers synthesised via RITP are typically only described regarding their bulk properties using nuclear magnetic resonance spectroscopy and size exclusion chromatography. To fully understand the complex composition of the polymerisation products and the RITP reaction mechanism, however, it is necessary to use a combination of advanced analytical methods. In the present RITP procedure, polystyrene was synthesised first and then used as a macroinitiator to synthesise polystyrene-block-poly(n-butyl acrylate) (PS-b-PBA) block copolymers. For the first time, these PS-b-PBA block copolymers were analysed by a combination of SEC, in situ1H NMR and HPLC. 1H NMR was used to determine the copolymer composition and the end group functionality of the samples, while SEC and HPLC were used to confirm the formation of block copolymers. Detailed information on the living character of the RITP process was obtained.  相似文献   
8.
The copper hydride clusters [Cu14H12(phen)6(PPh3)4][X]2 (X=Cl or OTf; OTf=trifluoromethanesulfonate, phen=1,10‐phenanthroline) are obtained in good yields by the reaction of [(Ph3P)CuH]6 with phen, in the presence of a halide or pseudohalide source. The complex [Cu14H12(phen)6(PPh3)4][Cl]2 reacts with CO2 in CH2Cl2, in the presence of excess Ph3P, to form the formate complex [(Ph3P)2Cu(κ2‐O2CH)], along with [(phen)(Ph3P)CuCl].  相似文献   
9.
Energy‐resolved electron‐yield X‐ray absorption spectroscopy is a promising technique for probing the near‐surface structure of nanomaterials because of its ability to discriminate between the near‐surface and bulk of materials. So far, the technique has only been used in model systems. Here, the local structural characterization of nanoporous cobalt‐substituted aluminophosphates is reported and it is shown that the technique can be employed for the study of open‐framework catalytically active systems. Evidence that the cobalt ions on the surface of the crystals react differently to those in the bulk is found.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号