首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   1篇
  国内免费   1篇
化学   24篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   5篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2007年   2篇
  2004年   4篇
  1999年   1篇
  1998年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
1.
An electrochemical approach to fabricate a nanostructured Fe/Pt-Fe catalyst through electrodepo-sition followed by galvanic replacement is presented. An Fe/Pt-Fe nanostructured electrode was prepared by deposition of Fe-Zn onto a Fe electrode surface, followed by replacement of the Zn by Pt at open-circuit potential in a Pt-containing alkaline solution. Scanning electron microscopy and energy-dispersive X-ray techniques reveal that the Fe/Pt-Fe electrode is porous and contains Pt. The electrocatalytic activity of the Fe/Pt-Fe electrode for oxidation of methanol was examined by cyclic voltammetry and chronoamperometry. The electrooxidation current on the Fe/Pt-Fe catalyst is much higher than that on flat Pt and smooth Fe catalysts. The onset potential and peak potential on the Fe/Pt-Fe catalyst are more negative than those on flat Pt and smooth Fe electrodes for methanol electrooxidation. All results show that this nanostructured Fe/Pt-Fe electrode is very attractive for integrated fuel cell applications in alkaline media.  相似文献   
2.
Journal of Thermal Analysis and Calorimetry - The polymorphs of HMX explosive show the different sensitivities to heat, friction, impact, shock, electrostatic charge, etc. Knowledge and...  相似文献   
3.
Journal of Thermal Analysis and Calorimetry - The ignition reaction of Mg/KNO3 was improved with addition of Ag/CNTs nanocomposite as catalyst. The nanoparticles of Ag(0) was deposited on the...  相似文献   
4.
5.
The nanoparticles of CoO, CoS and CoO/CoS composite are synthesized using precipitation method. The X-ray diffraction, UV–Vis absorption spectroscopy, energy dispersive X-ray spectroscopy, scanning electron microscopy and FT-IR spectroscopy are used to characterize the prepared nanoparticles. The EDX analysis shows the formation of CoO0.67S0.33 composite. The XRD pattern indicates the hexagonal structure for nanocomposite. The formation of Co–O and Co–S bonds is confirmed by FT-IR spectra. The band-gap energies of 2.97, 3.06 and 2.91 eV are obtained from UV–Vis spectra of CoO, CoS and CoO/CoS nanoparticles, respectively. The results of photodegradation of 2-nitrophenol show that the photoreactivity order of nanocatalysts is CoO/CoS > CoO > CoS. The pseudo first-order kinetic rate constants of 6.4 × 10?3, 4.3 × 10?3 and 12.2 × 10?3 min?1 are obtained for CoO, CoS and CoO/CoS nanoparticles, respectively, at photodegradation reaction conditions of pH 10, 30 mg/L of 2-NP and 1.3 g/L of the catalyst. The proposed nanocomposite shows an acceptable reusability and stability against photocorrosion in four-cycle photodegradation experiments.  相似文献   
6.
Carbon‐based solid acid was used as a new catalyst for conversion of trimethylsilyl ethers to their corresponding ethers in heterogeneous mixtures. The experiments were done moderately at room temperature, and high yields in suitable times were obtained under these conditions.  相似文献   
7.
The H-point standard addition method (HPSAM) was applied to the simultaneous determination of zinc(II) and cobalt(II). This method is based on the difference in the absorbance of methylthymol blue complexes of Zn(II) and Co(II) at pH 6 using different wavelength pairs. The results showed that Zn(II) and Co(II) can be determined simultaneously with concentration ratios of 20:1 and 1:7.5. Under working conditions, the proposed method was successfully applied to the simultaneous determination of zinc and cobalt in synthetic, drinking water and vitamin samples.  相似文献   
8.
A kinetic spectrophotometric method for determination of trace nitrite in two dynamic ranges (2–100 and 100–500 ng/mL) based on its catalytic effect on the reaction between methylthymol blue and potassium bromate in acidic (sulfuric acid) media is described. The reaction was monitored spectrophotometrically by measuring the decreasing color of methylthymol blue at 437 nm by the fixed‐time method of 4.0 min at 30°C. The detection limit is 0.6 ng/mL, and the relative standard deviations for 50.0 and 250.0 ng/mL nitrite are 1.6% and 1.3%, respectively. The method was used for the determination of nitrite in water samples.  相似文献   
9.
This paper describes a new method for prediction of the Chapman-Jouguet detonation pressures of CHNOFCl explosives using the heat of detonation, Qdet, the number of moles of gaseous products of detonation per gram of explosive, α, and the average molecular weight of gaseous products, M. The equation has the form: PCJ=15.88α(MQdet)1/2ρ02−11.17, where PCJ is the Chapman-Jouguet detonation pressure and ρ0 the loading density. Calculated PCJ by this procedure show good result with respect to measured detonation pressure for any pure or mixture of ideal and some of less ideal CHNOFCl explosives at ρ0>0.8 g/cm3.  相似文献   
10.
Nanostructured Fe/Pd-Fe catalysts are prepared first by the deposition of Fe-Zn onto the Fe electrode surface, followed by replacement of the Zn by Pd at open circuit potential in a Pd-containing alkaline solution. The surface morphology and composition of coatings are determined by scanning electron microscopy and energy dispersive X-ray techniques. The results show that the Fe/Pd-Fe coatings are porous structure and the average particle size of Pd-Fe is low, in the range of 30–80 nm. The electrocatalytic activity and stability of Fe/Pd-Fe electrodes for oxidation of methanol are examined by cyclic voltammetry and chronoamperometry techniques. The new Fe/Pd-Fe catalyst has higher electrocatalytic activity and better stability for the electro-oxidation of methanol in an alkaline media than flat Pd and smooth Fe catalysts. The onset potential and peak potential on Fe/Pd-Fe catalysts are more negative than that on flat Pd and smooth Fe electrodes for methanol electro-oxidation. All results show that the nanostructured Fe/Pd-Fe electrode is a promising catalyst towards methanol oxidation in alkaline media for fuel cell applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号