首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An electrochemical approach to fabricate a nanostructured Fe/Pt-Fe catalyst through electrodeposition followed by galvanic replacement is presented. An Fe/Pt-Fe nanostructured electrode was prepared by deposition of Fe-Zn onto a Fe electrode surface, followed by replacement of the Zn by Pt at open-circuit potential in a Pt-containing alkaline solution. Scanning electron microscopy and energy-dispersive X-ray techniques reveal that the Fe/Pt-Fe electrode is porous and contains Pt. The electrocatalytic activity of the Fe/Pt-Fe electrode for oxidation of methanol was examined by cyclic voltammetry and chronoamperometry. The electrooxidation current on the Fe/Pt-Fe catalyst is much higher than that on flat Pt and smooth Fe catalysts. The onset potential and peak potential on the Fe/Pt-Fe catalyst are more negative than those on flat Pt and smooth Fe electrodes for methanol electrooxidation. All results show that this nanostructured Fe/Pt-Fe electrode is very attractive for integrated fuel cell applications in alkaline media.  相似文献   

2.
Nanostructured Fe/Pd-Fe catalysts are prepared first by the deposition of Fe-Zn onto the Fe electrode surface, followed by replacement of the Zn by Pd at open circuit potential in a Pd-containing alkaline solution. The surface morphology and composition of coatings are determined by scanning electron microscopy and energy dispersive X-ray techniques. The results show that the Fe/Pd-Fe coatings are porous structure and the average particle size of Pd-Fe is low, in the range of 30–80 nm. The electrocatalytic activity and stability of Fe/Pd-Fe electrodes for oxidation of methanol are examined by cyclic voltammetry and chronoamperometry techniques. The new Fe/Pd-Fe catalyst has higher electrocatalytic activity and better stability for the electro-oxidation of methanol in an alkaline media than flat Pd and smooth Fe catalysts. The onset potential and peak potential on Fe/Pd-Fe catalysts are more negative than that on flat Pd and smooth Fe electrodes for methanol electro-oxidation. All results show that the nanostructured Fe/Pd-Fe electrode is a promising catalyst towards methanol oxidation in alkaline media for fuel cell applications.  相似文献   

3.
A nanostructured Ni/Pd-Ni catalyst with high activity for methanol oxidation in alkaline solution was prepared by electrodeposition followed by galvanic replacement, that is, electrodeposition of Ni-Zn on a Ni coating with subsequent replacement of the Zn by Pd at the open circuit potential in a Pd-containing alkaline solution. The surface morphology and composition of the coatings were examined by energy dispersive X-ray spectroscopy and scanning electron microscopy. The Ni/Pd-Ni coatings were porous and were composed of discrete Pd nanoparticles of about 58 nm. The electrocatalytic activity of the Ni/Pd-Ni electrodes for the oxidation of methanol was examined by cyclic voltammetry and electrochemical impedance spectroscopy. The onset potentials for methanol oxidation on Ni/Pd-Ni were 0.077 V and 0.884 V, which were lower than those for flat Pd and smooth Ni electrodes, respectively. The anodic peak current densities of these electrodes were 4.33 and 8.34 times higher than those of flat Pd (58.4 mA/cm2 vs 13.47 mA/cm2) and smooth Ni (58.4 mA/cm2 vs 7 mA/cm2). The nanostructured Ni/Pd-Ni electrode is a promising catalyst for methanol oxidation in alkaline media for fuel cell application.  相似文献   

4.
制备了用作直接甲醇燃料电池的碳载Pt-Fe(Pt-Fe/C)阴极催化剂, X射线能量色散谱(EDX)、X射线衍射谱和电化学测量的结果表明, 在Pt-Fe/C催化剂中, Fe以3种形式存在. 质量分数大约为20%的Fe进入Pt的晶格, 形成Pt-Fe合金, 质量分数大约为80%的Fe没有进入Pt的晶格而以Fe和Fe2O3的形式单独存在. 该催化剂经酸处理后, 非合金化Fe和Fe2O3被溶解, 而使Pt-Fe/C催化剂的电化学活性比表面积要比未经酸处理前的增加约30%左右, 导致Pt-Fe/C催化剂对氧还原的电催化活性优于未经酸处理前的Pt-Fe/C催化剂. 研究结果表明, Pt-Fe/C催化剂的电化学活性比表面积对氧还原的电催化活性起重要的作用, 另外, 只有与Pt形成合金的Fe能提高Pt对氧还原的电催化活性, 而非合金化的Fe对Pt催化剂对氧还原的电催化活性基本没有影响.  相似文献   

5.
Electrooxidation of methanol on upd-Ru and upd-Sn modified Pt electrodes   总被引:2,自引:0,他引:2  
The electrochemical oxidation of methanol has been investigated on underpotentially deposited-ruthenium-modified platinum electrode (upd-Ru/Pt) and on underpotentially deposited-tin-modified platinum electrode (upd-Sn/Pt). The submonolayers of upd-Ru and upd-Sn on a Pt electrode increased the rate of methanol electrooxidation several times as large as that on a pure Pt electrode. The best performance for methanol electrooxidation was obtained on a ternary platinum based catalyst modified by upd-Ru and upd-Sn simultaneously. The influence of the submonolayers of upd-Ru adatoms and upd-Sn adatoms on the oxidation of methanol in acid has been investigated. The effect of Ru on methanol electrooxidation lies on the distribution of Ru adatoms on a Pt surface. It has been shown that as long as the amount of upd-Ru deposits were controlled in a proper range, upd-Ru deposits would enhance the methanol oxidation obtained on a Pt electrode at whichever deposition potential the upd-Ru deposits were obtained. The effects of tin are sensible to the potential range. The enhancement effect of upd-Sn adatoms for the oxidation of methanol will disappear as the electrode potential is beyond a certain value. It is speculated that there exists a synergetic effect on the Pt electrode as adatoms Ru and Sn participate simultaneously in the methanol oxidation.  相似文献   

6.
Pt催化剂是电催化领域用途最为广泛的贵金属催化剂.Pt资源稀缺,价格昂贵,同时它的物理化学特性又决定了其在多种催化反应中难以被替代.在质子交换膜燃料电池的小分子醇类电氧化过程中,难免存在Pt的毒化现象,其催化性能有待进一步提升.因此,围绕着Pt催化剂纳米结构的设计、抗毒性及反应机理的探索一直是电催化研究面临的重要课题.目前,已被广泛认可的提高Pt催化性能的方法之一是引入第二种金属,通过金属间协同效应(双功能机理)、张力效应或电子效应等对Pt的催化行为进行改性.对于由双/多金属组成的纳米结构催化剂,无论是协同效应还是电子效应,催化活性的提高都需要金属间有丰富的接触界面和恰当的邻近状态.通过调变两组元的种类、原子比和接触状态等可以实现对金属-金属界面的调控,进而调变催化剂性能.除金属助剂外,金属氧化物对Pt催化剂的助催化作用也引起广泛关注.由于金属氧化物与Pt之间的密切接触作用,氧化物的形貌特点对Pt的催化性能可产生重要影响.到目前为止,有关催化剂形貌效应的研究主要集中于贵金属纳米颗粒上(Pt,Au,Pd等),但关于金属氧化物载体/助剂的形貌对贵金属催化性能影响的研究尚不多.具有明确形貌的金属氧化物载体/助剂,暴露的晶面不同,表面原子的配位状态也不同,从而造成与之密切接触的Pt的性质发生改变.因此,金属氧化物的表面性质以及Pt-金属氧化物的界面性质将对电催化性能产生重要影响,深入阐释贵金属-金属氧化物的表/界面性质以及建立有效的构效关系,对设计和制备高效电催化剂具有一定的指导意义.为了提高Pt基催化剂活性、抗CO中毒能力以及稳定性,本文采用共沉淀法和水热法分别制备了纳米棒和六边形纳米片状的Fe2O3作为Pt催化剂的助剂,考察了助剂形貌对Pt催化剂在碱性介质中催化氧化甲醇的促进作用.通过X射线衍射、扫描电子显微镜、透射电子显微镜、X射线光电子能谱以及电化学技术对催化剂进行了表征.结果显示,Fe2O3的存在能显著提高Pt催化剂在碱性介质中对甲醇氧化的电催化性能,而且以Fe2O3纳米棒为助剂制备的Pt-Fe2O3/C-R催化剂催化活性以及稳定性比Fe2O3纳米片为助剂制备的Pt-Fe2O3/C-P催化剂更高.这种促进效应可能与助剂Fe2O3的形态有关.Pt-Fe2O3/C-R催化剂中Pt的质量比活性为5.32 A/mgPt,本征活性为162.7 A/m2Pt,分别是Pt-Fe2O3/C-P催化剂的1.67和2.04倍,是商业PtRu/C样品的4.19和6.16倍.协同效应和电子效应是Pt催化性能提升的主要原因.此外,Pt-Fe2O3/C-R样品中高价态Pt的含量较高,可能也是加速甲醇氧化反应动力学的原因之一.高价态的Pt可能会增强甲醇分子在Pt表面的吸附强度,促进Pt上甲醇氧化反应初始步.这些发现不仅可对甲醇电催化氧化机理有了更深的理解,而且对设计和制备高性能甲醇氧化电催化剂也具有一定的指导意义.  相似文献   

7.
In this study, a platinum electrode was coated with NiZn layer (Pt/NiZn) in a nickel-zinc bath by electrodeposition for use as anode material for methanol electrooxidation in alkaline solution. The electrode prepared was etched in a concentrated alkaline solution (30% NaOH) to produce a porous and electrocatalytic surface suitable for use in the methanol electrooxidation (Pt/NiZn). The surface morphologies and compositions of coating before and after alkaline leaching were determined by energy dispersive X-ray (EDX) and scanning electron microscopy (SEM) techniques. The effect of NiZn coated platinum electrode for methanol electrooxidation was investigated in 1 M NaOH solution by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. Methanol electrooxidation on Pt/NiZn electrode was studied at various temperatures and potential scan rates. The results showed that Pt/NiZn electrode behaved as an efficient catalyst for the electrooxidation of methanol in alkaline medium.  相似文献   

8.
王赟  廖卫平  索掌怀 《分子催化》2013,27(4):356-361
采用浸渍还原法制备了炭黑负载Pt及Pt-Fe双金属催化剂,通过X光衍射、扫描电镜及X射线光电子能谱对催化剂进行了表征.利用循环伏安法和计时电流法研究了溶液pH值和Pt/Fe原子比对Pt-Fe/C催化剂的甲醇电催化氧化活性与稳定性的影响.结果显示,当溶液pH值为9.0,Pt/Fe原子比为1∶1时,所得Pt-Fe/C催化剂对甲醇的电催化氧化活性与稳定性明显优于Pt/C催化剂.Fe的引入不仅提高了Pt粒子的分散与电化学活性表面积,而且有利于富Pt表面的形成,从而提高了Pt的有效利用率与催化性能.  相似文献   

9.
This work reports a feasible synthesis of highly-dispersed Pt and Pt-Fe nanoparticles supported on multiwall carbon nanotubes (MWCNTs) without Fe and multiwall carbon nanotubes with iron (MWCNTs-Fe) which applied as electrocatalysts for methanol electrooxidation. A Pt coordination complex salt was synthesized in an aqueous solution and it was used as precursor to prepare Pt/MWCNTs, Pt/MWCNTs-Fe, and Pt-Fe/MWCNTs using FeC12.4H20 as iron source which were named S 1, S2 and S3, respectively. The coordination complex of platinum (TOA)2PtC16 was obtained by the chemical reaction between (NH4)2PtC16 with tetraoctylammonium bromide (TOAB) and it was characterized by FT-IR and TGA. The materials were characterized by Raman spectroscopy, SEM, EDS, XRD, TEM and TGA. The electrocatalytic activity of Pt-based supported on MWCNTs in the methanol oxidation was investigated by cyclic voltammetry (CV) and chronoamperometry (CA). Pt-Fe/MWCNTs electrocatalysts showed the highest electrocatalytic activity and stability among the tested electrocatalysts due to that the addition of "Fe" promotes the OH species adsorption on the electrocatalyst surface at low potentials, thus, enhancing the activity toward the methanol oxidation reaction (MOR).  相似文献   

10.
In this work, platinum particles decorated nanostructured poly (1,5-diaminonaphthalene) modified glassy carbon electrode (Pt/Nano-PDAN/MGCE) is prepared. The composite catalysts are characterized by scanning electron microscopy, energy dispersive spectroscopy, and electrochemical methods. The electrochemical methanol oxidation reaction is studied at the surface of this modified electrode. At same Pt loading, the Pt/Nano-PDAN/MGCE can act as higher efficient catalyst for methanol oxidation than that Pt/MGCE. Then, the influence of some parameters such as potential scan rates, switching potential, and methanol concentration on its oxidation as well as long-term stability of the modified electrode have studied by electrochemical methods. Also, ability of the modified electrode toward electrocatalytic oxidation of formaldehyde as an intermediate in methanol oxidation has been investigated.  相似文献   

11.
甲醇在Pt-Fe(111)/C表面吸附的理论研究   总被引:1,自引:0,他引:1  
王译伟  李来才  田安民 《化学学报》2008,66(22):2457-2461
采用密度泛函理论和周期平板模型相结合的方法, 对CH3OH分子在Pt-Fe(111)/C表面top, fcc, hcp和bridge位的吸附模型进行了构型优化、能量计算, 结果表明bridge位是较有利的吸附位. 掺杂后费米能级的位置发生了右移, 价带和导带均增宽, 极利于电子-空穴的迁移, 这对提高催化活性是非常有利的. 考察抗中毒性发现: CO在Pt(111)/C面上的吸附能比甲醇吸附能要高, CO在Pt-Fe(111)/C的吸附能比甲醇吸附能要低, 可说明CO在Pt(111)/C面上有中毒效应, 而Pt-Fe(111)/C的抗CO中毒能力增强, 是催化氧化甲醇良好的催化剂.  相似文献   

12.
This work reports a feasible synthesis of highly-dispersed Pt and Pt-Fe nanoparticles supported on multiwall carbon nanotubes (MWCNTs) without Fe and multiwall carbon nanotubes with iron (MWCNTs-Fe) which applied as electrocatalysts for methanol electrooxidation. A Pt coordination complex salt was synthesized in an aqueous solution and it was used as precursor to prepare Pt/MWCNTs, Pt/MWCNTs-Fe, and Pt-Fe/MWCNTs using FeCl2·4NH2O as iron source which were named S1, S2 and S3, respectively. The coordination complex of platinum (TOA)2PtCl6 was obtained by the chemical reaction between (NH4)2PtCl6 with tetraoctylammonium bromide (TOAB) and it was characterized by FT-IR and TGA. The materials were characterized by Raman spectroscopy, SEM, EDS, XRD, TEM and TGA. The electrocatalytic activity of Pt-based supported on MWCNTs in the methanol oxidation was investigated by cyclic voltammetry (CV) and chronoamperometry (CA). Pt-Fe/MWCNTs electrocatalysts showed the highest electrocatalytic activity and stability among the tested electrocatalysts due to that the addition of ”Fe” promotes the OH species adsorption on the electrocatalyst surface at low potentials, thus, enhancing the activity toward the methanol oxidation reaction (MOR).  相似文献   

13.
Fluorine tin oxide (FTO) and multi-walled carbon nanotube (MWCNT) composites synthesized by a sol-gel process followed by a hydrothermal treatment process have been explored as a support for Pt nanoparticles (Pt-FTO/MWCNTs). X-ray diffraction analysis and high resolution transmission electron microscopy show that the Pt and FTO nanoparticles with crystallite size of around 4-8 nm are highly dispersed on the surface of MWCNTs. Pt-FTO/MWCNT catalyst is evaluated in terms of the electrochemical catalytic activity for methanol electrooxidation using cyclic voltammetry, steady state polarization experiments, and electrochemical impedance spectroscopy technique in acidic medium. The Pt-FTO/MWCNT catalyst exhibits a higher intrinsic catalytic activity for methanol electrooxidation with high stability during potential cycling than Pt nanoparticles supported on tin dioxide/multi-walled carbon nanotube composites. The results suggest that FTO/MWCNT composites could be considered as an alternative support for Pt-based electrocatalysts in direct alcohol fuel cells.  相似文献   

14.
添加Fe对Pt/KL沸石芳构化及抗硫性能的影响   总被引:1,自引:0,他引:1  
Pt/KL沸五催化剂对正己烷的芳构化反应具有特别高的活性和选择性,但是它对原料中硫的存在非常敏感,要求合硫量小平川’,而工业催化剂的硫含量允许10’.这使得Pt/KL佛石催化剂一直未能工业化山.近年来,文献上开始出现了一些KL佛石上负载双金属的研究工作[’-’1.通过  相似文献   

15.
乙醇和CO在Pt-WO3/C电极上的电催化氧化   总被引:1,自引:0,他引:1  
制备并比较了Pt/C和Pt-WO3/C催化剂对乙醇的电化学氧化活性.发现无论是在酸性溶液中还是中性溶液中,Pt-WO3/C电极对乙醇氧化的电催化活性都比在Pt/C电极上高.这是由于WO3能提供乙醇在Pt上氧化所需的含氧物种,此外WO3能在较低电位下使乙醇氧化的中间产物CO氧化除去,从而提高了催化剂对乙醇氧化的催化活性.  相似文献   

16.
Carbon ceramic electrode, a new electrode substrate, was prepared by sol–gel procedure and used for the electropolymerization of o-phenylenediamine and incorporation of platinum nanoparticles into the resulting poly(o-phenylenediamine) (PoPD) film. The modified electrode was used for electrooxidation of methanol in 0.3 M H2SO4 as supporting electrolyte. The presence of PoPD film increased considerably the efficiency of deposited Pt nanoparticles toward the electrocatalytic oxidation of methanol. The effective parameters on the electrooxidation of methanol, i.e., amounts of polymer and Pt catalyst, medium temperature, working potential limit in anodic direction, and potential scan rate, were investigated, and the results were discussed.  相似文献   

17.
Electrooxidation of 2-propanol on Pt, Pd and Au in alkaline medium   总被引:1,自引:0,他引:1  
Pd and Au are investigated as electrocatalysts for 2-propanol oxidation and compared with the conventional catalyst of Pt in alkaline medium. The current density for 2-propanol oxidation on Pd electrode is much higher than that on Pt electrode. The onset potential for 2-propanol oxidation on Pd electrode is more negative compared with that on Pt electrode. The results show that Pd is a good electrocatalyst for 2-propanol oxidation and the activity for the electrooxidation of 2-propanol is higher than Pt and Au in alkaline medium. Pd has higher electrocatalytic activity and better stability for the electrooxidation of 2-propanol. The present study shows a promising choice of Pd as effective electrocatalyst for 2-propanol electrooxidation in alkaline medium.  相似文献   

18.
谷牧  何代平  江平  尹兴春  陈虎 《应用化学》2015,32(10):1164-1169
采用浸渍还原法制备了活性炭负载Pt-Fe双金属催化剂(Pt-Fe/AC),考察了其催化对氯硝基苯加氢性能。 与Pt/AC催化剂比较,该催化剂对催化对氯硝基苯加氢表现出高活性和优异的抑制脱氯性能,在乙醇为溶剂、催化剂Pt0.003-Fe0.04/AC(下标为元素在催化剂中的质量分数)用量为0.02 g/g对氯硝基苯、1 MPa H2和30 ℃条件下反应150 min,对氯硝基苯完全转化为对氯苯胺,而且即使在较高的反应温度和H2压力下,脱氯反应也得到了完全抑制。 采用X射线衍射(XRD)、透射电子显微镜(TEM)及X射线光电子能谱(XPS)等技术手段对Pt-Fe/AC催化剂进行了表征。 结果表明,Pt、Fe高度分散在活性炭上,Pt与Fe之间的相互作用对纳米Pt粒子的电子结构有一定的调变作用,使纳米Pt处于缺电子态,减弱了Pt与对氯苯胺苯环之间的电子反馈,这可能是Pt-Fe/AC对催化对氯硝基苯加氢表现出高活性和优异的抑制脱氯性能的主要因素。  相似文献   

19.
Catalytic activity of the Pt(111)/Os surface toward methanol electrooxidation was optimized by exploring a wide range of Os coverage. Various methods of surface analyses were used, including electroanalytical, STM, and XPS methods. The Pt(111) surface was decorated with nanosized Os islands by spontaneous deposition, and the Os coverage was controlled by changing the exposure time to the Os-containing electrolyte. The structure of Os deposits on Pt(111) was characterized and quantified by in situ STM and stripping voltammetry. We found that the optimal Os surface coverage of Pt(111) for methanol electrooxidation was 0.7 +/- 0.1 ML, close to 1.0 +/- 0.1 Os packing density. Apparently, the high osmium coverage Pt(111)/Os surface provides more of the necessary oxygen-containing species (e.g., Os-OH) for effective methanol electrooxidation than the Pt(111)/Os surfaces with lower Os coverage (vs e.g., Ru-OH). Supporting evidence for this conjecture comes from the CO electrooxidation data, which show that the onset potential for CO stripping is lowered from 0.53 to 0.45 V when the Os coverage is increased from 0.2 to 0.7 ML. However, the activity of Pt(111)/Os for methanol electrooxidation decreases when the Os coverage is higher than 0.7 +/- 0.1 ML, indicating that Pt sites uncovered by Os are necessary for sustaining significant methanol oxidation rates. Furthermore, osmium is inactive for methanol electrooxidation when the platinum substrate is absent: Os deposits on Au(111), a bulk Os ingot, and thick films of electrodeposited Os on Pt(111), all compare poorly to Pt(111)/Os. We conclude that a bifunctional mechanism applies to the methanol electrooxidation similarly to Pt(111)/Ru, although with fewer available Pt sites. Finally, the potential window for methanol electrooxidation on Pt(111)/Os was observed to shift positively versus Pt(111)/Ru. Because of the difference in the Os and Ru oxophilicity under electrochemical conditions, the Os deposit provides fewer oxygen-containing species, at least below 0.5 V vs RHE. Both higher coverage of Os than Ru and the higher potentials are required to provide a sufficient number of active oxygen-containing species for the effective removal of the site-blocking CO from the catalyst surface when the methanol electrooxidation process occurs.  相似文献   

20.
Concave nanostructures may be developed to improve the specific mass activity of a catalyst for formic acid and methanol electro-oxidation. In this work, we report the elctrocatalytic oxidation of methanol and formic acid in acid medium over concave Pt-Cu-Fe ternary nanocubes (NCs), obtained by the galvanic exchange of Pt and Fe on Cu NCs. The concave Pt-Cu-Fe NCs exhibited improved electrooxidation performance contrasted to Pt-Cu NCs and purchased commercial Pt/C as demonstrated by their improved durability, lower onset potential, and more preferable anti-poisoning properties. These properties are believed to originate from the tailored concave structure of the catalyst and possible synergetic effects among the components of the Pt-Cu-Fe NCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号