首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   780篇
  免费   57篇
  国内免费   3篇
化学   676篇
晶体学   8篇
力学   2篇
数学   81篇
物理学   73篇
  2023年   3篇
  2022年   7篇
  2021年   11篇
  2020年   25篇
  2019年   12篇
  2018年   15篇
  2017年   11篇
  2016年   26篇
  2015年   30篇
  2014年   30篇
  2013年   46篇
  2012年   63篇
  2011年   74篇
  2010年   35篇
  2009年   28篇
  2008年   56篇
  2007年   60篇
  2006年   50篇
  2005年   41篇
  2004年   45篇
  2003年   40篇
  2002年   21篇
  2001年   4篇
  2000年   4篇
  1999年   3篇
  1997年   2篇
  1996年   6篇
  1995年   3篇
  1994年   2篇
  1991年   4篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1985年   4篇
  1984年   4篇
  1983年   2篇
  1982年   7篇
  1981年   4篇
  1979年   6篇
  1978年   2篇
  1977年   7篇
  1976年   4篇
  1975年   3篇
  1974年   6篇
  1973年   2篇
  1972年   5篇
  1971年   2篇
  1969年   3篇
  1967年   6篇
  1965年   1篇
排序方式: 共有840条查询结果,搜索用时 250 毫秒
1.
Metallophthalocyanines (MPcs) are very useful pigments but scarcely soluble without appropriate functional groups in common solvents. Herein, we report that bent polyaromatic amphiphiles act as excellent solubilizing reagents for nonfunctionalized MPcs and larger MPc derivatives (e.g., CuPc, perhalogenated CuPcs, Cu‐naphthalocyanine, CuPc polymers, and double‐decker MPcs) in neutral water upon encapsulation. The resultant MPc nanocomposites display high stability towards heat and pH change. More importantly, the encapsulated MPcs can be released by simple protocols under mild conditions both into a bulk solvent and onto glass or polymer plates.  相似文献   
2.
This study investigates the effect of ionic liquids (ILs) on the anionic polymerization of methyl methacrylate (MMA). Polymethyl methacrylate (PMMA), an isotactic polymer, is prepared by anionic polymerization at a high reaction temperature with an IL that acts as both solvent and additive. The most plausible reaction mechanism is determined using 1H NMR and Fourier-transform infrared spectroscopy. The electrostatic interaction between MMA and the IL increases the apparent steric hindrance in MMA, resulting in the isotactic PMMA.  相似文献   
3.
4.
A series of coronenetetraimide (CorTIm)‐centered cruciform pentamers containing multiporphyrin units, in which four porphyrin units are covalently linked to a CorTIm core through benzyl linkages, were designed and synthesized to investigate their structural, spectroscopic, and electrochemical properties as well as photoinduced electron‐ and energy‐transfer dynamics. These systems afforded the first synthetic case of coroneneimide derivatives covalently linked with dye molecules. The steady‐state absorption and electrochemical results indicate that a CorTIm and four porphyrin units were successfully characterized by the corresponding reference monomers. In contrast, the steady‐state fluorescence measurements demonstrated that strong fluorescence quenching relative to the corresponding monomer units was observed in these pentamers. Nanosecond laser flash photolysis measurements revealed the occurrence of intermolecular electron transfer from triplet excited state of zinc porphyrins to CorTIm. Femtosecond laser‐induced transient absorption measurements for excitation of the CorTIm unit clearly demonstrate the sequential photoinduced energy and electron transfer between CorTIm and porphyrins, that is, occurrence of the initial energy transfer from CorTIm (energy donor) to porphyrins (energy acceptor) and subsequent electron transfer from porphyrins (electron donor) to CorTIm (electron acceptor) in these pentamers, whereas only the electron‐transfer process from porphyrins to CorTIm was observed when we mainly excite porphyrin units. Finally, construction of high‐order supramolecular patterning of these pentamers was performed by utilizing self‐assembly and physical dewetting during the evaporation of solvent.  相似文献   
5.
Redox‐inactive metal ions and Brønsted acids that function as Lewis acids play pivotal roles in modulating the redox reactivity of metal–oxygen intermediates, such as metal–oxo and metal–peroxo complexes. The mechanisms of the oxidative C?H bond cleavage of toluene derivatives, sulfoxidation of thioanisole derivatives, and epoxidation of styrene derivatives by mononuclear nonheme iron(IV)–oxo complexes in the presence of triflic acid (HOTf) and Sc(OTf)3 have been unified as rate‐determining electron transfer coupled with binding of Lewis acids (HOTf and Sc(OTf)3) by iron(III)–oxo complexes. All logarithms of the observed second‐order rate constants of Lewis acid‐promoted oxidative C?H bond cleavage, sulfoxidation, and epoxidation reactions of iron(IV)–oxo complexes exhibit remarkably unified correlations with the driving forces of proton‐coupled electron transfer (PCET) and metal ion‐coupled electron transfer (MCET) in light of the Marcus theory of electron transfer when the differences in the formation constants of precursor complexes were taken into account. The binding of HOTf and Sc(OTf)3 to the metal–oxo moiety has been confirmed for MnIV–oxo complexes. The enhancement of the electron‐transfer reactivity of metal–oxo complexes by binding of Lewis acids increases with increasing the Lewis acidity of redox‐inactive metal ions. Metal ions can also bind to mononuclear nonheme iron(III)–peroxo complexes, resulting in acceleration of the electron‐transfer reduction but deceleration of the electron‐transfer oxidation. Such a control on the reactivity of metal–oxygen intermediates by binding of Lewis acids provides valuable insight into the role of Ca2+ in the oxidation of water to dioxygen by the oxygen‐evolving complex in photosystem II.  相似文献   
6.
A Pd0‐catalyzed asymmetric Nazarov‐type cyclization is described. The optimized ligand for the reaction incorporates a weakly coordinating pyridine ring into a TADDOL‐derived phosphoramidite (TADDOL=α,α,α,α‐tetraaryl‐1,3‐dioxolane‐4,5‐dimethanol). The reaction leads to the formation of cyclopentenones as single diastereoisomers that incorporate two contiguous asymmetric centers, one tertiary and one an all‐carbon‐atom quaternary stereocenter, in high yield and optical purity. It is noteworthy that the reaction does not require that substrates should be activated by aryl substituents.  相似文献   
7.
8.
This paper is a review of the recent progress on gas sensors using graphene oxide (GO). GO is not a new material but its unique features have recently been of interest for gas sensing applications, and not just as an intermediate for reduced graphene oxide (RGO). Graphene and RGO have been well known gas-sensing materials, but GO is also an attractive sensing material that has been well studied these last few years. The functional groups on GO nanosheets play important roles in adsorbing gas molecules, and the electric or optical properties of GO materials change with exposure to certain gases. Addition of metal nanoparticles and metal oxide nanocomposites is an effective way to make GO materials selective and sensitive to analyte gases. In this paper, several applications of GO based sensors are summarized for detection of water vapor, NO2, H2, NH3, H2S, and organic vapors. Also binding energies of gas molecules onto graphene and the oxygenous functional groups are summarized, and problems and possible solutions are discussed for the GO-based gas sensors.  相似文献   
9.
The optimization of a porous structure to ensure good separation performances is always a significant issue in high‐performance liquid chromatography column design. Recently we reported the homogeneous embedment of Ag nanoparticles in periodic mesoporous silica monolith and the application of such Ag nanoparticles embedded silica monolith for the high‐performance liquid chromatography separation of polyaromatic hydrocarbons. However, the separation performance remains to be improved and the retention mechanism as compared with the Ag ion high‐performance liquid chromatography technique still needs to be clarified. In this research, Ag nanoparticles were introduced into a macro/mesoporous silica monolith with optimized pore parameters for high‐performance liquid chromatography separations. Baseline separation of benzene, naphthalene, anthracene, and pyrene was achieved with the theoretical plate number for analyte naphthalene as 36 000 m?1. Its separation function was further extended to cis/trans isomers of aromatic compounds where cis/trans stilbenes were chosen as a benchmark. Good separation of cis/trans‐stilbene with separation factor as 7 and theoretical plate number as 76 000 m?1 for cis‐stilbene was obtained. The trans isomer, however, is retained more strongly, which contradicts the long‐ established retention rule of Ag ion chromatography. Such behavior of Ag nanoparticles embedded in a silica column can be attributed to the differences in the molecular geometric configuration of cis/trans stilbenes.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号