首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3082篇
  免费   206篇
  国内免费   13篇
化学   2446篇
晶体学   32篇
力学   70篇
数学   184篇
物理学   569篇
  2023年   30篇
  2022年   16篇
  2021年   70篇
  2020年   81篇
  2019年   96篇
  2018年   61篇
  2017年   65篇
  2016年   124篇
  2015年   106篇
  2014年   153篇
  2013年   254篇
  2012年   277篇
  2011年   316篇
  2010年   190篇
  2009年   152篇
  2008年   217篇
  2007年   184篇
  2006年   160篇
  2005年   150篇
  2004年   149篇
  2003年   109篇
  2002年   81篇
  2001年   45篇
  2000年   30篇
  1999年   10篇
  1998年   13篇
  1997年   13篇
  1996年   14篇
  1995年   11篇
  1994年   18篇
  1993年   16篇
  1992年   13篇
  1991年   7篇
  1990年   14篇
  1989年   8篇
  1988年   8篇
  1987年   6篇
  1986年   8篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   5篇
  1980年   2篇
  1979年   5篇
  1978年   1篇
  1977年   4篇
  1976年   1篇
排序方式: 共有3301条查询结果,搜索用时 25 毫秒
1.
The requirement of green and sustainable materials to prepare heterogeneous catalysts has intensified for practical reasons over the past few decades. Carbohydrates are possibly the most plentiful and renewable organic materials in nature with inimitable physiochemical properties, plausible low-cost and large-scale production, and sustainability features could be exploited in the generation of nanostructured heterogeneous catalysts. This review article outlines the organic transformations catalyzed by diverse carbohydrate-based nanostructured catalysts in greener and environmentally friendly processes. Selected examples are highlighted for a variety of organic reactions exploiting the proposed catalysts’ reactivity and reusability, and interactions with the intrinsic nature of the applied carbohydrate supports; advantages and speculated challenges of the introduced catalysts are deliberated as well.  相似文献   
2.
A new family of distorted ribbon-shaped nanographenes was designed, synthesized, and their optical and electrochemical properties were evaluated, pointing out an unprecedented correlation between their structural characteristics and the two-photon absorption (TPA) responses and electrochemical band gaps. Three nanographene ribbons have been prepared: a seven-membered-ring-containing nanographene presenting a tropone moiety at the edge, its full-carbon analogue, and a purely hexagonal one. We have found that the TPA cross-sections and the electrochemical band gaps of the seven-membered-ring-containing compounds are higher and lower, respectively, than those of the fully hexagonal polycyclic aromatic hydrocarbon (PAH). Interestingly, the inclusion of additional curvature has a positive effect in terms of non-linear optical properties of those ribbons.  相似文献   
3.
4.
Efficient water electrolysis catalyst is highly demanded for the production of hydrogen as a sustainable energy fuel. It is reported that cobalt derived nanoparticle (CoS2, CoP, CoS|P) decorated reduced graphene oxide (rGO) composite aerogel catalysts for highly active and reliable hydrogen evolution reaction electrocatalysts. 7 nm level cobalt derived nanoparticles are synthesized over graphene aerogel surfaces with excellent surface coverage and maximal expose of active sites. CoS|P/rGO hybrid aerogel composites show an excellent catalytic activity with overpotential of ≈169 mV at a current density of ≈10 mA cm?2. Accordingly, efficient charge transfer is attained with Tafel slope of ≈52 mV dec?1 and a charge transfer resistance (Rct) of ≈12 Ω. This work suggests a viable route toward ultrasmall, uniform nanoparticles decorated graphene surfaces with well‐controlled chemical compositions, which can be generally useful for various applications commonly requiring large exposure of active surface area as well as robust interparticle charger transfer.  相似文献   
5.
6.
Microporous hypercross-linked conjugated quinonoid chromophores represent a novel class of amorphous polymers, synthesized by the reaction of anthracene with dimethoxy methane in the presence of FeCl3 catalyst. Their N2 adsorption isotherms confirm their microporous nature. Diffuse reflectance UV-Visible(DRS UV-Vis) spectroscopy confirms their matrix built with the conjugated quinonoids by their broad light absorption characteristics extending from 1000 nm to 200 nm with the absorbance maximum close to 400 nm. The catalyst cross-linked anthracene with ―CH2― bridges and subsequently dehydrogenating them to form quinonoids. Their Fourier transform infrared(FTIR) spectra showed their characteristic quinonoid vibrations between 1600 and 1700 cm-1. The synthesis of polymers was carried out at 30, 40, 50, 60, 70 and 80 ℃, but the quinonoid content of the polymer obtained at 80 ℃ was higher than that of the others. Their scanning electron microscopy(SEM) images showed microspheres of 1 to 5 μm size built with tiny particles. Their surfaces were not smooth. The polymer synthesized at 80 ℃ showed 5.1 wt% CO2 sorption at 25 ℃ and 0.1 MPa, but when it was recross-linked, the CO2 sorption increased to 8 wt%. Hence, hypercross-linked conjugated quinonoid chromophores of anthracene are good for sorption of CO2.  相似文献   
7.
Silver nanoparticles (NPs) ranging in size from 40 to 100 nm were prepared in high yield by using an improved seed‐mediated method. The homogeneous Ag NPs were used as building blocks for 2D assembled Ag NP arrays by using an oil/water interface. A close‐packed 2D array of Ag NPs was fabricated by using packing molecules (3‐mercaptopropyltrimethoxysilane) to control the interparticle spacing. The homogeneous 2D Ag NP array exhibited a strong quadrupolar cooperative plasmon mode resonance and a dipolar red‐shift relative to individual Ag NPs suspended in solution. A well‐arranged 2D Ag NP array was embedded in polydimethylsiloxane film and, with biaxial stretching to control the interparticle distance, concomitant variations of the quadrupolar and dipolar couplings were observed. As the interparticle distance increased, the intensity of the quadrupolar cooperative plasmon mode resonance decreased and dipolar coupling completely disappeared. The local electric field of the 2D Ag NP array was calculated by using finite difference time domain simulation and qualitatively showed agreement with the experimental measurements.  相似文献   
8.
Star copolymers have attracted significant interest due to their different characteristics compared with diblock copolymers, including higher critical micelle concentration, lower viscosity, unique spatial shape, or morphologies. Development of synthetic skills such as anionic polymerization and controlled radical polymerization have made it possible to make diverse architectures of polymers. Depending on the molecular architecture of the copolymer, numerous morphologies are possible, for instance, Archimedean tiling patterns and cylindrical microdomains at symmetric volume fraction for miktoarm star copolymers as well as asymmetric lamellar microdomains for star‐shaped copolymers, which have not been reported for linear block copolymers. In this review, we focus on morphologies and microphase separations of miktoarm (AmBn and ABC miktoarm) star copolymers and star‐shaped [(A‐b‐B)n] copolymers with nonlinear architecture. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1–21  相似文献   
9.
Pure organic molecules based thermally activated delayed fluorescence (TADF) emitters have been successfully developed in recent years for their propitious application in highly efficient organic light emitting diodes (OLEDs). In the case of orange red emitters, the non-radiative process is known to be a serious issue due to its lower lying singlet energy level. However, recent studies indicate that there are tremendous efforts put to develop efficient orange red TADF emitters. In addition, the external quantum efficiency (EQE) of heteroaromatic based orange red TADF OLEDs surpassed 30 %. Such heteroaromatic type emitters showed wide emission spectra; therefore, more attention is being paid to develop highly efficient orange red TADF emitters along with good color purity. Herein, the recent progress of orange red TADF emitters based on molecular structures, such as cyanobenzene, heteroaromatic, naphthalimide, and boron-based acceptors, are reviewed. Further, our insight on these acceptors has been provided by their photophysical studies and device performances. Future perspectives of orange red TADF emitters for real practical applications are discussed.  相似文献   
10.
Self‐emulsion polymerization (SEP), a green route developed by us for the polymerization of amphiphilic monomers, does not require any emulsifier or an organic solvent except that the water‐soluble initiators such as 2,2′‐azobis[2‐(2‐imidazolin‐2‐yl)propane]dihydrochloride (VA‐044) and potassium persulfate (KPS) are only used. We report here the polymer nanoscaffolds from a number of amphiphilic monomers, which can be used for in situ encapsulation of a variety of nanoparticles. As a demonstration of the efficacy of these nanoscaffolds, the synthesis of a biocompatible hybrid nanoparticle (nanohybrid), prepared by encapsulating Fe3O4 magnetic nanoparticle (Fe3O4 MNPs) in poly(2‐hydroxyethyl methacrylate) in water, for MRI application is presented. The nanohybrid prepared following the SEP in the form of an emulsion does not involve the use of any stabilizing agent, crosslinker, polymeric emulsifier, or surfactant. This water‐soluble, spherical, and stable nanohybrid containing Fe3O4 MNPs of average size 10 ± 2 nm has a zeta potential value of ?41.89 mV under physiological conditions. Magnetic measurement confirmed that the nanohybrid shows typical magnetic behavior having a saturation magnetization (Ms) value of 32.3 emu/g and a transverse relaxivity (r2) value of 29.97 mM?1 s?1, which signifies that it can be used as a T2 contrast agent in MRI. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号