首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reversible addition fragmentation chain transfer (RAFT) polymerization and bifunctional sparteine/thiourea organocatalyst‐mediated ring opening polymerization (ROP) were combined to produce poly(L ‐lactide) star polymers and poly(L ‐lactide‐co‐styrene) miktoarm star copolymers architecture following a facile experimental procedure, and without the need for specialist equipment. RAFT was used to copolymerize ethyl acrylate (EA) and hydroxyethyl acrylate (HEA) into poly(EA‐co‐HEA) co‐oligomers of degree of polymerization 10 with 2, 3, and 4 units of HEA, which were in turn used as multifunctional initiators for the ROP of L ‐lactide, using a bifunctional thiourea organocatalytic system. Furthermore, taking advantage of the living nature of RAFT polymerization, the multifunctional initiators were chain extended with styrene (poly((EA‐co‐HEA)‐b‐styrene) copolymers), and used as initiators for the ROP of L ‐lactide, to yield miktoarm star copolymers. The ROP reactions were allowed to proceed to high conversions (>95%) with good control over molecular weights (ca. 28,000‐230,000 g/mol) and polymer structures being observed, although the molecular weight distributions are generally broader (1.3–1.9) than those normally observed for ROP reactions. The orthogonality of both polymerization techniques, coupled with the ubiquity of HEA, which is used as a monomer for RAFT polymerization and as an initiator for ROP, offer a versatile approach to star‐shaped copolymers. Furthermore, this approach offers a practical approach to the synthesis of polylactide star polymers without a glove box or stringent reaction conditions. The phase separation properties of the miktoarm star copolymers were demonstrated via thermal analyses. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6396–6408, 2009  相似文献   

2.
The miktoarm star‐shaped poly(lactic acid) (PLA) copolymer, (PLLA)2‐core‐(PDLA)2, was synthesized via stepwise ring‐opening polymerization of lactide with dibromoneopentyl glycol as the starting material. 1H NMR and FTIR spectroscopy proved the feasibility of synthetic route and the successful preparation of star‐shaped PLA copolymers. The results of FTIR spectroscopy and XRD showed that the stereocomplex structure of the copolymer could be more perfect after solvent dissolution treatment. Effect of chain architectures on crystallization was investigated by studying the nonisothermal and isothermal crystallization of the miktoarm star‐shaped PLA copolymer and other stereocomplexes. Nonisothermal differential scanning calorimetry and polarizing optical microscopy tests indicated that (PLLA)2‐core‐(PDLA)2 exhibited the fastest formation of a stereocomplex in a dynamic test due to its special structure. In isothermal crystallization tests, the copolymer exhibited the fast crystal growth rate and the most perfect crystal morphology. The results reveal that the unique molecular structure has an important influence on the crystallization of the miktoarm star‐shaped PLA copolymer. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 814–826  相似文献   

3.
A novel amphiphilic A3B miktoarm star copolymer poly(N‐isopropylacrylamide)3‐poly(N‐vinylcarbazole) ((PNIPAAM)3(PVK)) was successfully synthesized by a combination of single‐electron transfer living radical polymerization (SET‐LRP) and reversible addition‐fragmentation chain transfer (RAFT) polymerization. First, the well‐defined three‐armed poly(N‐isopropylacrylamide) (PNIPAAM)3 was prepared via SET‐LRP of N‐isopropylacrylamide in acetone at 25 °C using a tetrafunctional bromoxanthate iniferter (Xanthate‐Br3) as the initiator and Cu(0)/PMDETA as a catalyst system. Secondly, the target amphiphilic A3B miktoarm star copolymer ((PNIPAAM)3(PVK)) was prepared via RAFT polymerization of N‐vinylcarbazole (NVC) employing (PNIPAAM)3 as the macro‐RAFT agent. The architecture of the amphiphilic A3B miktoarm star copolymers were characterized by GPC, 1H‐NMR spectra. Furthermore, the fluorescence intensity of micelle increased with the temperature and had a good temperature reversibility, which was investigated by dynamic light scattering (DLS), fluorescent and UV‐vis spectra. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4268–4278, 2010  相似文献   

4.
A series of well‐defined θ‐shaped copolymers composed of polystyrene (PS) and poly(ε‐caprolactone) (PCL) with controlled molecular weight and narrow molecular weight distribution have been successfully synthesized without any purification procedure by the combination of atom transfer radical polymerization (ATRP), ring‐opening polymerization (ROP), and the “click” chemistry. The synthetic process involves two steps: (1) synthesis of AB2 miktoarm star copolymers, which contain one PCL chain terminated with two acetylene groups and two PS chains with two azido groups at their one end, (α,α′‐diacetylene‐PCL) (ω‐azido‐PS)2, by ROP, ATRP, and the terminal group transformation; (2) intramolecular cyclization of AB2 miktoarm star copolymers to produce well‐defined pure θ‐shaped copolymers using “click” chemistry under high dilution. The 1H NMR, FTIR, and gel permeation chromatography techniques were applied to characterize the chemical structures of the resultant intermediates and the target polymers. Their thermal behavior was investigated by DSC. The mobility decrease of PCL chain across PS ring in the theta‐shaped copolymers restricts the crystallization ability of PCL segment. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2620–2630, 2009  相似文献   

5.
The phase behavior of (PS‐PIB)2s‐PAA miktoarm star terpolymers with varying volume fractions of PAA was investigated directly by transmission electron microscopy, atomic force microscopy, and small‐angle X‐ray scattering, and indirectly by thermogravimetric analysis and degree of water sorption. The microdomains of (PS‐PIB)2s‐PAA demonstrate a unique and unexpected progression from highly ordered cylinders, to lower ordered spheres, to gyroid structures with increasing PAA content from 6.6 to 47 wt %. Interestingly, the phase behavior in the miktoarm star polymer system is significantly different from that reported previously for the linear counterpart of similar composition (PAA‐PS‐PIB‐PS‐PAA), where a steady progression from cylindrical to lamellar morphology was observed with increasing PAA content. At low PAA concentrations, the morphology is driven primarily by the relative solubility of the components, while at high PAA content the molecular architecture dominates. Thermal annealing demonstrated the thermodynamic stability of the morphologies, indicating the potential for design of novel microstructures for specific applications through precise control of architecture, composition, and interaction parameters of the components. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 916–925  相似文献   

6.
Amphiphilic supramolecular miktoarm star copolymers linked by ionic bonds with controlled molecular weight and low polydispersity have been successfully synthesized via reversible addition‐fragmentation chain transfer (RAFT) polymerization using an ion‐bonded macromolecular RAFT agent (macro‐RAFT agent). Firstly, a new tetrafunctional initiator, dimethyl 4,6‐bis(bromomethyl)‐isophthalate, was synthesized and used as an initiator for atom transfer radical polymerization (ATRP) of styrene to form polystyrene (PSt) containing two ester groups at the middle of polymer chain. Then, the ester groups were converted into tertiary amino groups and the ion‐bonded supramolecular macro‐RAFT agent was obtained through the interaction between the tertiary amino group and 2‐dodecylsulfanylthiocarbonylsulfanyl‐2‐methyl propionic acid (DMP). Finally, ion‐bonded amphiphilic miktoarm star copolymer, (PSt)2‐poly(N‐isopropyl‐acrylamide)2, was prepared by RAFT polymerization of N‐isopropylacrylamide (NIPAM) in the presence of the supramolecular macro‐RAFT agent. The polymerization kinetics was investigated and the molecular weight and the architecture of the resulting star polymers were characterized by means of 1H‐NMR, FTIR, and GPC techniques. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5805–5815, 2008  相似文献   

7.
Three tetrafunctional bromoxanthate agents (Xanthate3‐Br, Xanthate2‐Br2, and Xanthate‐Br3) were synthesized. Initiative atom transfer radical polymerizations (ATRP) of styrene (St) or reversible addition fragmentation chain transfer (RAFT) polymerizations of vinyl acetate (VAc) proceeded in a controlled manner in the presence of Xanthate3‐Br, Xanthate2‐Br2, or Xanthate‐Br3, respectively. The miktoarm star‐block copolymers containing polystyrene (PS) and poly(vinyl acetate) (PVAc) chains, PSnb‐PVAc4‐n (n = 1, 2, and 3), with controlled structures were successfully prepared by successive RAFT and ATRP chain‐extension experiments using VAc and St as the second monomers, respectively. The architecture of the miktoarm star‐block copolymers PSnb‐PVAc4‐n (n = 1, 2, and 3) were characterized by gel permeation chromatography and 1H NMR spectra. Furthermore, the results of the cleavage of PS3b‐PVAc and PVAc2b‐PS2 confirmed the structures of the obtained miktoarm star‐block copolymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

8.
A dendritic macroinitiator having 16 TEMPO‐based alkoxyamines, Star‐16 , was prepared by the reaction of a dendritic macroinitiator having eight TEMPO‐based alkoxyamines, [G‐3]‐OH , with 4,4′‐bis(chlorocarbonyl)biphenyl. The nitroxide‐mediated radical polymerization (NMRP) of styrene (St) from Star‐16 gave 16‐arm star polymers with PDI of 1.19–1.47, and NMPR of 4‐vinylpyridine from the 16‐arm star polymer gave 16‐arm star diblock copolymers with PDI of 1.30–1.43. The ring‐opening polymerization of ε‐caprolactone from [G‐3]‐OH and the subsequent NMRP of St gave AB8 9‐miktoarm star copolymers with PDI of 1.30–1.38. The benzyl ether linkages of the 16‐arm star polymers and the AB8 9‐miktoarm star copolymers were cleaved by treating with Me3SiI, and the resultant poly(St) arms were investigated by size exclusion chromatography (SEC). The SEC results showed PDIs of 1.23–1.28 and 1.18–1.22 for the star polymers and miktoarm stars copolymers, respectively, showing that they have well‐controlled poly(St) arms. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1159–1169, 2007.  相似文献   

9.
The synthesis, characterization, and postpolymerization functionalization of star copolymers by RAFT polymerization, using ethylene glycol dimethacrylate as the difunctional monomer for core formation via crosslinking, is presented in this work. The “arm first” approach was used for the synthesis of PDMAEMAnPOEGMAn double‐hydrophilic mikto‐arm stars and PDMAEMAxPLMAy amphiphilic miktoarm stars, while the “core first” approach was used for the synthesis of (PDMAEMA‐b‐POEGMA)n double‐hydrophilic star block copolymers. Methyl iodide was used as the quaternizing agent for the transformation of the star copolymers into strong cationic star polyelectrolytes, through reaction on the dimethylamino groups of PDMAEMA blocks. The stars were characterized at the molecular level by SEC and proton nuclear magnetic resonance. Preliminary light scattering experiments, using THF and H2O as the solvents, were performed in order to get information regarding the solution behavior of the novel star copolymers synthesized. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1771–1783  相似文献   

10.
Well‐defined (AB)3 type star block copolymer consisting of aromatic polyether arms as the A segment and polystyrene (PSt) arms as the B segment was prepared using atom transfer radical polymerization (ATRP), chain‐growth condensation polymerization (CGCP), and click reaction. ATRP of styrene was carried out in the presence of 2,4,6‐tris(bromomethyl)mesitylene as a trifunctional initiator, and then the terminal bromines of the polymer were transformed to azide groups with NaN3. The azide groups were converted to 4‐fluorobenzophenone moieties as CGCP initiator units by click reaction. However, when CGCP was attempted, a small amount of unreacted initiator units remained. Therefore, the azide‐terminated PSt was then used for click reaction with alkyne‐terminated aromatic polyether, obtained by CGCP with an initiator bearing an acetylene unit. Excess alkyne‐terminated aromatic polyether was removed from the crude product by means of preparative high performance liquid chromatography (HPLC) to yield the (AB)3 type star block copolymer (Mn = 9910, Mw/Mn = 1.10). This star block copolymer, which contains aromatic polyether segments with low solubility in the shell unit, exhibited lower solubility than A2B or AB2 type miktoarm star copolymers. In addition, the obtained star block copolymer self‐assembled to form spherical aggregates in solution and plate‐like structures in film. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

11.
Well‐defined drug‐conjugated amphiphilic A2B2 miktoarm star copolymers [(PCL)2‐(PEG)2‐D] were prepared by the combination of controlled ring‐opening polymerization (CROP) and “click” reaction strategy. First, bromide functionalized poly(ε‐caprolactone) (PCL‐Br) with double hydroxyl end groups was synthesized by the CROP of ε‐caprolactone using 2,2‐bis(bromomethyl)propane‐1,3‐diol as a difunctional initiator in the presence of Sn(Oct)2 at 110 °C. Next, the bromide groups of PCL‐Br were quantitatively converted to azide form by NaN3 to give PCL‐N3. Subsequently, the end hydroxyl groups of PCL‐N3 were capped with ibuprofen as a model drug at room temperature. Finally, copper(I)‐catalyzed cycloaddition reaction between ibuprofen‐conjugated PCL‐N3 and slightly excess alkyne‐terminated poly(ethylene glycol) (A‐PEG) led to ibuprofen‐conjugated A2B2 miktoarm star copolymer [(PCL)2‐(PEG)2‐D]. The excess A‐PEG was removed by dialysis. 1H NMR, FTIR and SEC analyzes confirmed the expected miktoarm star architecture. These amphiphilic miktoarm star copolymers could self‐assemble into multimorphological aggregates in aqueous solution, which were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). In addition, the drug‐loading capacity of these drug‐conjugated miktoarm star copolymers as well as their nondrug‐conjugated analogs were also investigated in detail. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2009  相似文献   

12.
Various star‐shaped copolymers of methyl methacrylate (MMA) and n‐butyl methacrylate (nBMA) were synthesized in one pot with RuCl2(PPh3)3‐catalyzed living radical polymerization and subsequent polymer linking reactions with divinyl compounds. Sequential living radical polymerization of nBMA and MMA in that order and vice versa, followed by linking reactions of the living block copolymers with appropriate divinyl compounds, afforded star block copolymers consisting of AB‐ or BA‐type block copolymer arms with controlled lengths and comonomer compositions in high yields (≥90%). The lengths and compositions of each unit varied with the amount of each monomer feed. Star copolymers with random copolymer arms were prepared by the living radical random copolymerization of MMA and nBMA followed by linking reactions. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 633–641, 2002; DOI 10.1002/pola.10145  相似文献   

13.
Amphiphilic A3B mikto‐arm copolymers have been synthesized using a t‐butyl‐diphenyl silyl‐based methylglucoside derivative. The latter has been first used as initiator for the polymerization of ε‐caprolactone leading to three‐arm star‐shaped structures followed by several postpolymerization steps to obtain star‐shaped poly(ε‐caprolactone) macroinitiator. Atom transfer radical polymerization (ATRP) of diisopropylidene galactose methacrylate in THF at 60 °C using CuBr ligated with 1,1,4,7,10,10‐hexamethyltriethylenetetramine (HMTETA) as catalytic complex allowed the formation of A3B mikto‐arm copolymers with different compositions and molecular weights. Selective deprotection of sugar protecting groups finally generated amphiphilic mikto‐arm copolymers. The molecular characterization of those copolymers was performed by 1H NMR spectroscopy and gel permeation chromatography (GPC) analysis. The self‐assembly of the copolymers into micellar aggregates and the related critical micellization concentration (CMC) in aqueous media were determined by dynamic light scattering (DLS) and UV‐visible spectroscopy, respectively. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3271–3280, 2010  相似文献   

14.
We prepared a novel miktoarm star copolymer with an azobenzene unit at the core via combination of atom transfer radical polymerization (ATRP) and nitroxide‐mediated free radical polymerization (NMP) routes. For this purpose, first, mikto‐functional initiator, 3 , with tertiary bromide (for ATRP) and 2,2,6,6‐tetramethylpiperidin‐1‐yloxy (TEMPO) (for NMP) functionalities and an azobenzene moiety at the core was synthesized. The initiator 3 thus obtained was used in the subsequent living radical polymerization routes such as ATRP of MMA and NMP of St, respectively, to give A2B2 type miktoarm star copolymer, (PMMA)2‐(PSt)2 with an azobenzene unit at the core with controlled molecular weight and low polydispersity (Mw/Mn < 1.15). The photoresponsive properties of 3 and (PMMA)2‐(PSt)2 miktoarm star copolymer were investigated. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1396–1403, 2006  相似文献   

15.
Well‐defined amphiphilic A8B4 miktoarm star copolymers with eight poly(ethylene glycol) chains and four poly(ε‐caprolactone) arms (R‐8PEG‐4PCL) were prepared using “click” reaction strategy and controlled ring‐opening polymerization (CROP). First, multi‐functional precursor (R‐8N3‐4OH) with eight azides and four hydroxyls was synthesized based on the derivatization of resorcinarene. Then eight‐PEG‐arm star polymer (R‐8PEG‐4OH) was prepared through “click” reaction of R‐8N3‐4OH with pre‐synthesized alkyne‐terminated monomethyl PEG (mPEG‐A) in the presence of CuBr/N,N,N′,N″,N″′‐ pentamethyldiethylenetriamine (PMDETA) in DMF. Finally, R‐8PEG‐4OH was used as tetrafunctional macroinitiator to prepare resorcinarene‐centered A8B4 miktoarm star copolymers via CROP of ε‐caprolactone utilizing Sn(Oct)2 as catalyst at 100 °C. These miktoarm star copolymers could self‐assemble into spherical micelles in aqueous solution with resorcinarene moieties on the hydrophobic/hydrophilic interface, and the particle sizes could be controlled by the ratio of PCL to PEG. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2824–2833.  相似文献   

16.
We demonstrated the synthesis of miktoarm star block copolymers of AB, AB2, and A2B, in which block A consisted of linear poly(tert‐butyl acrylate) (PtBA) and block B consisted of cyclic polystyrene. These structures were produced using the atom transfer radical polymerization to make telechelic polymers that, after modification, were further coupled together by copper‐catalyzed “click” reactions with high coupling efficiency. Deprotection of PtBA to poly(acrylic acid) (PAA) afforded amphiphilic miktoarm structures that when micellized in water gave vesicle morphologies when the block length of PAA was 21 units. Increasing the PAA block length to 46 units produced spherical core‐shell micelles. AB2 miktoarm stars packed more densely into the core compared to its linear counterpart (i.e., a four times greater aggregation number with approximately the same hydrodynamic diameter), resulting in the PAA arms being more compressed in the corona and extending into the water phase beyond its normal Gaussian chain conformation. These results show that the cyclic structure attached to an amphiphilic block has a significant influence on increasing the aggregation number through a greater packing density. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

17.
Anionic polymerization high-vacuum techniques and appropriate multifunctional initiators/additives were employed for the synthesis of novel star structures of poly(n-hexyl isocyanate) (PHIC). A new trifunctional initiator prepared by the reaction of tris(4-isocyanatophenyl)methane with benzyl sodium was used for the synthesis of three-arm star PHIC. Divinyl benzene and the core-first or the arm-first/core-first (in-out) approach were utilized for the synthesis of multiarm star homopolymers, (PHIC)n, star-block copolymers, (PHIC-b-PI)n, and miktoarm star copolymers, (PS)n(PHIC)n, where PS is polystyrene. The molecular characteristics obtained by size-exclusion chromatography, equipped with refractive index and two-angle light scattering detectors, nuclear magnetic resonance, spectroscopy, and dilute solution viscometry showed that well-defined structures were synthesized in this study. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2387–2399, 2007  相似文献   

18.
Biodegradable star‐shaped poly(ethylene glycol)‐block‐poly(lactide) copolymers were synthesized by ring‐opening polymerization of lactide, using star poly(ethylene glycol) as an initiator and potassium hexamethyldisilazide as a catalyst. Polymerizations were carried out in toluene at room temperature. Two series of three‐ and four‐armed PEG‐PLA copolymers were synthesized and characterized by gel permeation chromatography (GPC) as well as 1H and 13C NMR spectroscopy. The polymerization under the used conditions is very fast, yielding copolymers of controlled molecular weight and tailored molecular architecture. The chemical structure of the copolymers investigated by 1H and 13C NMR indicates the formation of block copolymers. The monomodal profile of molecular weight distribution by GPC provided further evidence of controlled and defined star‐shaped copolymers as well as the absence of cyclic oligomeric species. The effects of copolymer composition and lactide stereochemistry on the physical properties were investigated by GPC and differential scanning calorimetry. For the same PLA chain length, the materials obtained in the case of linear copolymers are more viscous, whereas in the case of star copolymer, solid materials are obtained with reduction in their Tg and Tm temperatures. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3966–3974, 2007  相似文献   

19.
The synthesis of A4B4 miktoarm star copolymers, where A is polytetrahydrofuran (PTHF) and B is polystyrene (PSt), was accomplished with orthogonal initiators and consecutive cationic ring‐opening polymerization (CROP) and atom transfer radical polymerization (ATRP). The compound formed in situ from the reaction of 3‐{2,2‐bis[2‐bromo‐2‐(chlorocarbonyl) ethoxy] methyl‐3‐(2‐chlorocarbonyl) ethoxy} propoxyl‐2‐bromopropanoyl chloride [C(CH2OCH2CHBrCOCl)4] with silver perchlorate was used to initiate the CROP of tetrahydrofuran. The obtained polymer contained four secondary bromine groups at the α position to the original initiator sites and was used to initiate the ATRP of styrene with a CuBr/2,2′‐bipyridine catalyst to form a C(PTHF)4(PSt)4 miktoarm star copolymer. The miktoarm copolymer was characterized by gel permeation chromatography and 1H NMR. The macroinitiator C(PTHF)4Br4 was hydrolyzed to afford PTHF arms. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2134–2142, 2001  相似文献   

20.
Two samples of ABCD 4‐miktoarm star quarterpolymer with A = polystyrene (PS), B = poly(ε‐caprolactone) (PCL), C = poly(methyl methacrylate) (PMMA) or poly(tert‐butyl acrylate) (PtBA), and D = poly(ethylene glycol) (PEG) were prepared using click reaction strategy (Cu(I)‐catalyzed Huisgen [3 + 2] reaction). Thus, first, predefined block copolymers of different polymerization routes, PS‐b‐PCL with azide and PMMA‐b‐PEG and PtBA‐b‐PEG copolymers with alkyne functionality, were synthesized and then these blocks were combined together in the presence of Cu(I)/N,N,N′,N″,N″‐pentamethyldiethylenetriamine as a catalyst in DMF at room temperature to give the target 4‐miktoarm star quarterpolymers. The obtained miktoarm star quarter polymers were characterized by GPC, NMR, and DSC measurements. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1218–1228, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号