首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
化学   15篇
  2005年   1篇
  2003年   6篇
  2002年   2篇
  2001年   1篇
  2000年   4篇
  1987年   1篇
排序方式: 共有15条查询结果,搜索用时 31 毫秒
1.
The reaction of oxidation of hydroquinone by hydrogen peroxide catalyzed by copper(II) in the presence of 2,2’-dipyridyl is activated by hexamethylenediamino groups that are bonded to the surface of filter paper; additional activating effect is produced by 2,2′-dipyridyl. The introduction of malonic acid dinitrile into the indicator reaction improves the sensitivity of the determination of copper and the contrast of the reaction in solution because of the formation of a blue product. Differently colored compounds are formed on a paper support at different concentrations of copper, which makes it possible to visually distinguish the quantities of copper that differ by an order of magnitude in the range 1 × 10-5-0.5 μg. Quantitative detection is possible in the range 5 × 10-6-0.1 μg (cmin = 3 × 10-6 μg). The concentration of copper (0.2-1.5 μg/mL) is determined in blood serum; the consumption of the sample per one determination is 3 μL  相似文献   
2.
3.
 Sorption of copper on filter-paper with chemically attached hexamethylenediamino-groups (HMDA-filter) allows to obtain the sorbent (Cu/HMDA-filter) stable in respect to desorption of copper. A nitrogen-containing herbicide imazapyr (imaz) is retained on Cu/HMDA-filters at pH 5.5–7.0 forming a relatively stable complex. Imazapyr is determined directly on the sorbent by its activating effect in the oxidation of hydroquinone with H2O2 catalyzed by Cu(II) with the formation of a product absorbing at 490 nm. The copper ions serve both to preconcentrate imazapyr and to catalyze the indicator reaction. The use of 1-μL sample aliquots pipetted onto the Cu/HMDA-filters allows to determine 1 × 10−3–0.03 μmol of imazapyr, whereas preconcentration of the analyte by pumping of its solution through the same sorbent expands the linear range to 1 × 10−4–1 × 10−1 μmol of imazapyr. When the indicator reaction is carried out in solution, the range of activating action of imazapyr is narrower (0.06–0.1 μmol a for a solution volume of 10 mL). The determination is selective: 5–100-fold amounts of amines, aminoacids, carboxylic acid derivatives and other model compounds do not interfere. Soil extracts and carrot juice samples spiked with imazapyr have been analyzed. Received January 10, 2000. Revision July 28, 2000.  相似文献   
4.
Reaction of oxidation of o-dianisidine (o-D) with H(2)O(2) which is widely used in catalytic methods of analysis in solution has been conducted on silica plates for thin-layer chromatography. The rate of the reaction catalyzed by model compounds (p-toluenesulphonyl chloride, methyl benzoate, benzoic acid, and acrylamide) is noticeably higher on silica than in solution in comparable conditions. The degree of acceleration varies depending on the catalyst and is more pronounced at its lower concentrations. By use of p-toluenesulphonyl chloride determination as an example it has been shown that the accelerating effect of silica enables to decrease the detection limit down to 0.07 nmol cm(-2) (as compared with 4 nmol.cm(-2) in solution); the accuracy is not diminished. It is concluded that catalytic indicator reactions on solid supports may represent high interest for analytical chemists.  相似文献   
5.
The inhibitory effect of Cd(II), Ni(II), and Zn(II) on the oxidation of 3,3′,5,5′ -tetramethylbenzidine with periodate was detected. The optimum reaction conditions were found, and the procedures were developed for determining 1 × 10−2 to 10 μg/mL Cd(II), Ni(II), and Zn(II) in solution. The indicator reaction was performed on a number of supports. The maximum inhibitory effect was observed on silica gel-based plates for TLC. Procedures for determining 6 × 10−3 to 0.4 μg of these metals were developed. Silica gel plates with the immobilized reagent for cadmium (bromobenzothiazo) were used to preconcentrate cadmium. A selective test procedure was developed for determining 1 × 10−4 −3 × 10−3 μg/mL cadmium with the visual detection of the process rate. Upon the introduction of dimethylglyoxime into the indicator reaction, the inhibitory effect of nickel changed to its promoting effect and the detection limit for nickel was lowered. A procedure was developed for determining 3 × 10−4 −3 × 10−3 μg/mL nickel in solution and 7 × 10−3−4 × 10−1 μg nickel on the surface of Sorbfil plates. An assumption was made about the reasons for the inhibitory effect of metal ions on the oxidation of aryl diamines with periodate.__________Translated from Zhurnal Analiticheskoi Khimii, Vol. 60, No. 6, 2005, pp. 662–669.Original Russian Text Copyright © 2005 by Beklemishev, Kiryushchenkov, Stoyan, Dolmanova.  相似文献   
6.
Cadmium (along with Fe(II), Co(II), Zn(II), and Pb(II) ions) decreases the rate of oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) with KIO4 conducted either without or with Mn(II) as a catalyst. Cadmium(II) is preconcentrated from aqueous solutions on silica plates or paper filters physically modified with a reagent for selective determination of Cd(II), namely 1-[(6-bromo-2-benzothiazolyl)azo]-2-naphthol (bromobenzothiazo, or BBT). The modifier is strongly retained on the both supports at pH 6–10 and does not affect the inhibiting effect of Cd(II) in the indicator reaction. Cadmium is determined by its inhibiting action directly on the sorbents by measuring transmittance (BBT/paper) or reflectance (BBT/silica) with limits of detection of 2 × 10–4 and 0.03 mg/L, respectively. The proposed hybrid combination of sorption with catalytic detection on the sorbent allows to increase the selectivity factors several times (up to 2 orders) relatively to the determination in solution. Tap water samples and soil extracts were analyzed.  相似文献   
7.
8.
9.
Enzymatic methods for the determination of mercury(II) using native and immobilized enzymes from different classes and sources were considered. Enzymatic procedures were compared in sensitivity, selectivity, rapidity, and experimental techniques. The main approaches to controlling the performance characteristics of the enzymatic procedures were discussed. The application of these procedures to the determination of mercury(II) in particular samples (water and soils of different origin and biological fluids) was considered.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号