首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   2篇
化学   7篇
  2016年   1篇
  2014年   4篇
  2013年   1篇
  2012年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
采用高温固相法,在还原气氛下制备出Al2O3/蒙脱土:Eu2+光致发光材料。研究了原料配比、烧结温度、保温时间以及激活剂Eu2+的含量对发光性能的影响。实验结果表明:加入蒙脱土后,所制备的样品仍保持Al2O3的架状结构,晶格常数发生变化,晶体产生畸变,使得Eu2+更容易进入到晶格中。荧光光谱分析显示,发射光谱是两个宽峰组成,对应于Eu2+的4f65d→4f7(8S7/2)宽带允许跃迁。发光机制分析认为,宽峰结构由Eu0.92[Al1.76Si2.24O8]新相产生,生成的新相增加了Eu2+的取代格位,形成新的发光中心。因此Eu2+不仅取代了Al2O3八面体中Al的格位,而且取代了蒙脱土层间所吸附的阳离子格位,使样品发光强度提高了220%。  相似文献   
2.
低分子量含氟聚合物是重要的新型功能材料,在国防工业中占有特殊地位。同时,作为高科技战略物资,近年来逐渐成为研究热点。本文对低分子量含氟聚合物的制备方法、官能化及特性进行了综述,重点介绍了低分子量含氟聚合物的制备和官能化方法的研究进展,并总结和详细介绍了低分子量含氟聚合物的特性,最后对该领域的前景和发展方向进行了展望。  相似文献   
3.
超分子树枝聚合物起源于聚合物链结构的2个重要进化(树枝链和超分子),是通过建筑模块在芯、支化单元或表面的分子自组装(非共价键连接)生成的树枝聚合物,具有独特的结构特征和新颖的物理、化学等功能。超分子树枝聚合物的进一步自组织可形成液晶态或柱状体等有序结构。超分子树枝聚合物可分为氢键型、金属配位型、π-π堆叠型、离子型、拓扑型(含轮烷和索烃结构)、混合型(含2种或2种以上不同非共价键)等类型。本文综述各种类型超分子树枝聚合物的合成、结构、聚集态和应用。  相似文献   
4.
与共价键聚合物由单体(M1)通过共价键连接不同,超分子聚合物是由单体(M2)通过非共价键连接而成的长链大分子。聚合包括分子聚合和超分子聚合。超分子聚合描述M2通过非共价键自组装形成超分子聚合物的过程,涉及氢键、π-π堆砌型和立体匹配等驱动力以及分子识别、协同性等特征,与M1通过共价键形成聚合物的过程(分子聚合)不同。为了理解超分子聚合物链结构形成机理,本文分析和讨论超分子聚合的三个主要机理:(1)线性链生长;(2)螺旋链生长;(3)拓扑链生长。  相似文献   
5.
用两步法合成了端硅烷基液体氟弹性体:(1)以端羧基液体氟弹性体和五氟苯酚为原料,通过Steglich反应制备了端五氟苯酚酯液体氟弹性体;(2)端五氟苯酚酯液体氟弹性体与γ-氨丙基三乙氧基硅烷发生取代反应,制备端硅烷基液体氟弹性体.用FTIR,1H-NMR,19F-NMR和GPC对端羧基液体氟弹性体、端五氟苯酚酯液体氟弹性体和端硅烷基液体氟弹性体的化学结构进行了表征.端硅烷基液体氟弹性体可在室温下进行湿度固化,固化膜的T g随着固化前硅烷封端液体氟弹性体相对分子质量的增加而降低.固化膜具有很好的耐酸,航空煤油,非极性溶剂等化学药品性,且高分子量的固化膜的耐航空煤油,环己烷,盐酸性能优于低分子量的固化膜.固化膜具有较好的疏水疏油性,与水的接触角为91°~114°,与丙三醇的接触角为89°~111°.固化膜具有较好的耐热性能,5%热失重温度T5在215~280℃,800℃的残炭率为23.44%~38.69%.  相似文献   
6.
芳香电子供体-受体折叠体是由一定长度的柔性连接分子、含π电子供体(D)或称为富π电子的1,5-二烷基萘酚(Dan)等和含π电子受体(A)或称为缺π电子的1,4,5,8-萘四甲酸二酰亚胺(Ndi)等基团构成,通过分子内或分子间D-A交替堆叠而形成的折叠体。芳香电子供体-受体折叠体的形成涉及二级结构(构象)的分子自组装。自愈合功能的发现是芳香电子供体-受体折叠体研究的新亮点。本文综述各种芳香电子供体-受体折叠体的链结构、分子内或分子间D-A协同相互作用、折叠体结构和形成机理、以及镊子型折叠体的自愈合功能。  相似文献   
7.
聚合物拓扑学研究聚合物单体单元在大分子链的空间排布,尤其是研究常规线性以外的环形、支化、树枝、超分子组装以及含机械互锁结构的聚轮烷、聚索烃等拓扑聚合物的情况。引入拓扑等价概念可以简化具有多样性和复杂性聚合物链结构的分类。若把单体、金属离子或颗粒视为点,线性链视为线,环链视为环,则拓扑聚合物的链结构就涉及点、线、环之间的变换关系。本文介绍Tezuka提出的拓扑分类体系并阐述其在拓扑聚合物的应用。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号