首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   1篇
  国内免费   4篇
化学   4篇
综合类   1篇
  2022年   2篇
  2017年   1篇
  2012年   1篇
  2010年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
夏博文  朱斌  刘静  谌春林  张建 《化学进展》2022,34(8):1661-1677
在第75届联合国大会上,我国承诺力争在2030年前实现碳达峰、2060年前实现碳中和。主要由光合作用产生的生物质将在双碳目标中扮演重要角色,通过高效转化可衍生出一系列替代化石产品的高值化学品。其中,2,5-呋喃二甲酸(FDCA)由于具有与石油基对苯二甲酸(TPA)相似的共轭碳环和二酸结构,可替代TPA用于合成热稳定性能、气体阻隔性能更优的生物基呋喃聚酯,大幅降低聚酯行业对化石资源的严重依赖。此外,FDCA在医药、香料、金属配位化学方面也有广泛应用,从而被认为是12种最具潜力的生物基平台化合物之一。FDCA通常可由5-羟甲基糠醛(HMF)通过催化氧化进行合成。相比于需要贵金属催化剂、高温和高压条件、以化学势作为驱动力的传统热催化方法,电催化氧化采用电极电势作为主要驱动力,是更为绿色和高效的新颖合成方法。本综述对电催化氧化制备FDCA反应所用的贵金属、过渡金属和非金属催化剂进行了总结与分析,梳理了催化剂设计和反应机理的研究脉络,并指出了该领域发展所面临的挑战与机遇。  相似文献   
2.
为积极应对化石能源枯竭和生态环境日益严峻等问题,可再生生物质资源的深度开发并进一步替代传统能源或石化原料被广泛认可.利用高效催化技术将生物质资源转化为高附加值的平台化合物,有望衍生出大量具备新颖结构与功能的绿色化学品.2,5-呋喃二甲酸(FDCA)作为重要的生物质基平台化合物之一,具有巨大的市场应用价值,其中因其与化石基对苯二甲酸(PTA)有着极其相似的化学结构,以FDCA替代PTA作为合成单体制备大宗聚合物备受关注.以5-羟甲基糠醛(HMF)为原料,采用多相催化体系(主要是贵金属催化剂)选择氧化制备FDCA是目前广泛采用的方法.但“HMF路线”面临一些基础性的难题,如HMF熔点较低,需低温存储,增加了实际应用中的运输成本;HMF在碱性溶液中易降解,导致反应过程中碳平衡损失;HMF结构中含有的不对称的羟基和醛基官能团在氧化反应中会发生竞争反应,致使反应副产物较多;此外,碱性反应介质中通常会得到醛基优先氧化的中间体5-羟甲基-2-呋喃甲酸(HMFCA),但由于HMFCA结构中羧基官能团的存在使得羟基进一步氧化较为困难,通常需要增加碱浓度、提升温度或压力,使反应条件变得苛刻.因此,寻求新的原料替代HMF,实现温和条件下高效合成FDCA具有重要意义.本文采用改性后的碳纳米管负载Pd催化剂(Pd/o-CNT),从具有独特对称结构的2,5-二羟甲基呋喃(BHMF)出发,提出一种新颖、高效催化合成FDCA的“BHMF路线”.反应在60°C常压下进行,BHMF在20 min内即可完全转化,60 min后FDCA的产率最高可达93.0%,优于相同条件下HMF为原料时的性能(FDCA产率仅为35.7%).相比于未作处理的碳纳米管负载钯催化剂(Pd/CNT),Pd/o-CNT催化剂具有更高含量的氢化钯(PdHx)物种,显著促进了FDCA产率的提升.Pd/o-CNT在循环使用10次后,BHMF仍能完全转化,FDCA产率维持在75%.稳定性下降可能与活性物种流失、团聚及价态变化有关.基于对照试验,本文提出了可能的反应路径,即BHMF主要是通过2,5-二甲酰基呋喃和5-甲酰基-2-呋喃甲酸作为过程中间体,有效转化为FDCA,从而规避并减少生成HMF和活性较低的HMFCA.本文通过以新原料BHMF作底物,实现了高效制备生物基平台化合物FDCA,为生物质的产业化应用提供了新的研究思路.  相似文献   
3.
谌春林  张建  王锐  苏党生  彭峰 《催化学报》2010,26(8):948-954
 采用化学气相沉积法制备了 N 掺杂多壁纳米碳管, 并运用透射电子显微镜、N2 物理吸附、热重-差示扫描量热、程序升温氧化和 X 射线光电子能谱等手段对样品进行了表征. 结果表明, 纯化处理的纳米碳管表面 N 含量为 4.2%, 其中包括吡啶、己内酰胺、氧化吡啶、吡啶酮和吡咯等含氮官能团. 研究了各种含氮官能团燃烧的动力学行为. N 原子掺杂进入碳管的石墨结构中, 提高了表面碱性, 有可能用于催化与能源转化领域. 另外, 本文提供了一种可用于场发射器件的杯状闭合结构纳米碳合成方法.  相似文献   
4.
纳米碳材料被广泛应用于能量存储和催化等领域, 但简便而有效地制备高性能碳材料仍是一个挑战. 本文采用微波法制备爆米花, 经过预碳化、KOH活化后得到高比表面积和高微孔率的氮掺杂纳米碳材料, 并利用SEM、TEM、XRD、Raman、XPS和N2物理吸附表征材料的结构和组成, 并将其用作超级电容器电极材料. 结果表明: 活化样品由于具有发达的孔结构和合适的氮含量而具有优异的电化学性能; 在0.2A?g-1的电流密度下, 比电容高达214F?g-1; 当电流密度20A?g-1时, 其倍率性能保持65%.  相似文献   
5.
采用湿化学法制备了低维氧化铈的纳米棒和纳米颗粒,通过原位X射线粉末衍射、透射电镜和N2物理吸附等技术研究了氧化铈纳米结构对其热稳定性的影响.结果表明,氧化铈纳米棒的稳定性更高.采用浸渍法制备了氧化铈负载的氧化钒催化剂,并用于丙烷氧化脱氢反应中,发现以氧化铈纳米棒为载体的催化剂表现出更高的丙烯选择性,这可能是由于棒状结构的开放性有利于产物丙烯的直接扩散.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号