首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
  国内免费   14篇
化学   21篇
  2021年   1篇
  2019年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2012年   3篇
  2008年   1篇
  2007年   1篇
  2005年   5篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1993年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
乔金樑 《高分子科学》2015,33(3):371-375
A novel method for preparing conductive polyethylene(PE) composites has been developed. In the method, the powder of low melting point metal alloy(LMPA) is filled into the PE matrix by using twin screw extruder at a temperature below the melting point of the LMPA, and followed by a die drawing process at a temperature around the melting point of the metal alloy. It has been found that die drawing process, repeating the die drawing process and adding nano-fillers, such as montmorillonite(MMT) and multi-wall carbon nanotubes(MWCNTs), all help reduce the metal particle size in the PE matrix, thus improve the conductivity of the composite. The conductivity improvement is attributed to an increased number of the smaller metal particles. Therefore, conductive composites of polymer/metal alloy/nano-filler with high conductivity are possible to be prepared by using the new method.  相似文献   
2.
复合成核剂对聚丙烯结晶行为的影响   总被引:8,自引:0,他引:8  
以超细橡胶粒子与有机磷酸盐成核剂复配的方法制备了一种新型复合成核剂,通过示差扫描量热法(DSC)比较了复合成核剂改性PP以及有机磷酸盐成核剂改性PP的结晶温度、等温结晶行为及等温结晶动力学;利用扫描电子显微镜(SEM)的能谱附件和透射电子显微镜(TEM)研究了复合成核剂的微观形态及其在PP中的分散情况.研究结果表明,复合成核剂中超细橡胶粒子作为载体使有机磷酸盐成核剂附着在其表面,提高了成核剂在聚丙烯中的分散性,因而提高了成核剂的成核效率,当成核剂用量较小时,即可明显提高PP的结晶速率和力学性能.  相似文献   
3.
驱油用聚丙烯酰胺分子量测试的光散射研究   总被引:1,自引:0,他引:1  
利用旋转流变仪分析了超高分子量部分水解聚丙烯酰胺溶液的流变性质,并根据光散射动态模式分析了其在不同浓度和不同盐离子浓度下的尺寸分布.建立了利用多角度激光光散射准确测量驱油用超高分子量聚丙烯酰胺重均分子量(Mw)、均方根回转半径()和第二位力系数值(A2)的方法.准确测量了商品化驱油用超高分子量聚丙烯酰胺FP3630S的这3个参数,分别为Mw=(1.33±0.06)×107,  相似文献   
4.
超细全硫化粉末丁腈橡胶对聚氯乙烯性能的影响   总被引:3,自引:0,他引:3  
制备了PVC/超细全硫化粉末丁腈橡胶(NBR-UFPR)二元、PVC/NBR-UFPR/纳米CaCO3三元复合材料,研究了3种NBR-UFPR(平均粒径分别为150nm、90nm和70nm)对硬质PVC性能的影响.测试结果表明,3种NBR-UFPR均可同时提高硬质PVC的热稳定性、耐热性和韧性.透射电镜(TEM)照片显示,3种NBR-UFPR均能以单个粒子均匀分散在PVC基体中,NBR-UFPR与PVC相间的界面积大于传统的PVC/弹性体共混物.PVC/NBR-UFPR/纳米CaCO3三元复合材料具有更高的热稳定性、耐热性和韧性,TEM照片显示,在三元复合材料中,分散相粒子间的平均距离进一步减小.  相似文献   
5.
近些年来,石墨烯以其独特的结构和优异的性质成为备受瞩目的研究前沿和热点。石墨烯作为纳米增强组分,少量添加可以使聚合物的物理性能得到大幅地提高。本文就石墨烯及其在聚合物复合材料的研究进展进行了综述,着重阐述了现已工业化制备石墨烯的氧化还原法,以及石墨烯/聚合物复合材料的制备方法(溶液共混、原位聚合和熔融共混)和性能(电学性能、导热性能、力学性能、热性能以及气体阻隔性能),并指出其待解决的关键技术及工业化前景。  相似文献   
6.
制备了一种新型聚丙烯 丁苯橡胶 纳米碳酸钙三元纳米复合材料 .研究结果显示 ,复合材料中的大多数纳米碳酸钙粒子被包藏在丁苯橡胶中 ,并与之共同形成分散于聚丙烯树脂中的分散相 ,这种聚丙烯纳米复合材料具有高刚性、高韧性、高耐热性和高的结晶速率 .系统研究了成核剂苯甲酸钠的加入和纳米碳酸钙的用量对该类纳米复合材料相态结构、结晶形态和结晶动力学的影响 ,以及具有包藏结构的分散相粒径和PP中β晶含量对材料性能的影响 .结果表明 ,苯甲酸钠的加入和纳米碳酸钙用量的提高均可使体系中分散相粒径减小 ,结晶速率加快 ,进而使材料的韧性、刚性和耐热性提高 .  相似文献   
7.
将具有纳米尺度的全交联型羧基丁腈粉末橡胶(CNBR)与聚丙烯(PP)及用甲基丙烯酸环氧丙酯(GMA)官能化的聚丙烯(PP—g—GMA)进行反应共混,制备了一种新型CNBR/PP热塑性弹性体,用原子力显微镜(AFM)和透射电子显微镜(TEM)研究了CNBR/PP热塑性弹性体的形态,加入PP—g—GMA增容剂后,CNBR分散相的粒子尺寸显著降低,分布也趋于均,与未增容体系相比,增容体系的拉仲强度和断裂仲长率均有大幅度的改善,如CNBR含量为75%时,拉仲强度提高了94%,断裂仲长率增加了136%,用差示扫描量热法(DSC)研究了热塑性弹性体中聚丙烯的结晶行为,在增容体系中,共混前后聚丙烯的结晶温度提高了10℃,表明橡胶粒子或两相界面处形成的反应产物起到了类似成核剂的作用。  相似文献   
8.
通过凝胶和溶胶分析与分子量测定的方法,研究了不同体系下,"OH对PDMS乳液γ辐射效应的影响.结果表明,"OH不仅可引发聚二甲基硅氧烷的分子间交联,也能促进其降解.对于纯PDMS乳液,在所研究的剂量范围内,"OH对其辐射交联行为影响较小.但若体系中加入H2O2、KIO4和N2O这些提高"OH生成产额的添加剂时,"OH对PDMS的促降解作用会随着吸收剂量增加而表现更明显,导致凝胶含量与纯乳液辐照情况相比下降较多.即使加入交联剂-三羟甲基丙烷三甲基丙烯酸酯(TMPTMA),在过量的"OH存在下,当吸收剂量大于40kGy以上时,TMPTMA不仅没有提高交联度,反而会与"OH协同,使PDMS的凝胶含量下降更显著,同时产生更多的小分子聚合物,并使PDMS的平均分子量分布变窄.这可能是由于交联剂首先与"OH作用,形成的产物会加快PDMS的降解.  相似文献   
9.
采用与传统制备方法不同的加料顺序,即将苯胺单体溶液滴加到过硫酸铵氧化剂溶液中,制备了具有珊瑚状表面形貌的聚苯胺亚微米级颗粒.扫描电子显微镜(SEM)表征表明这种聚苯胺颗粒的表面形貌非常的粗糙,并有大量纳米级的小凸起.使用3种不同的聚乙烯醇(PVA),即1799、1788和CP-1000,为稳定剂,得到的聚苯胺颗粒分别为PANI-1、PANI-2和PANI-3,均具有珊瑚状表面形貌.颗粒的平均尺寸分别为250,215和140 nm.颗粒的尺寸分布也随尺寸的降低而明显变窄.可见,稳定剂PVA在水中溶解性的好坏和分子量大小对聚苯胺颗粒的聚集程度和尺寸大小有很大的影响.通过傅里叶变换红外光谱(FTIR),热失重分析(TGA),粉末X-射线衍射(XRD),四探针电导率测试仪和N2吸脱附表征对得到的聚苯胺颗粒的化学结构、热稳定性、结晶结构、电性能和比表面积进行了全面的表征.聚苯胺颗粒的电导率可以达到2.7 S·cm-1.对珊瑚状表面形貌的形成机理进行了探讨.  相似文献   
10.
<正> 在高分子多相体系中,相间界面张力(γ_(12))是微区的重要控制因素,无论是Donatelli,Sperling等提出的IPN体系微区尺寸关系式,还是Tokita提出的共混体系中分散相粒径表达式,都含有界面张力因子。 然而,由于高分子体系中界面张力测定的诸多实际困难,当前在国内外非常多的研究工作中,广泛地采用了一些替代的办法,应用较多的有以表面张力差来代替界面张力的Antonow原则延伸及一些近似的计算方法,如Wu及Girifalco和Good提出的由表  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号