首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   22篇
力学   1篇
物理学   23篇
  2021年   1篇
  2013年   1篇
  2012年   6篇
  2010年   1篇
  2008年   6篇
  2007年   3篇
  2006年   1篇
  2005年   4篇
  2003年   1篇
排序方式: 共有24条查询结果,搜索用时 500 毫秒
1.
La掺杂浓度对PLZT薄膜红外光学性质的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
采用溶胶-凝胶法在Pt/Ti/SiO2/Si衬底上制备了不同La掺杂浓度PLZT(x/40/60)薄膜- x射线衍射分析表明制备的PLZT(x/40/60)薄膜是具有单一钙钛矿结构的多晶薄膜- 通过红外椭圆偏振光谱仪测量了波长为2-5—12-6μm范围内PLZT薄膜的椭偏光谱,采用经典色 散模型拟合获得PLZT薄膜的红外光学常数,同时也拟合获得PLZT薄膜的厚度- 随着La掺杂浓 度的增大,折射率逐渐减小- 而消光系数除PLZT(4/40/60)薄膜外,呈现逐渐增大的趋势- 分析表明这些差异主要与PLZ 关键词: PLZT薄膜 红外光学性质 红外椭圆偏振光谱  相似文献   
2.
研究了基于InP基的In0.65Ga0.35As/In0.52Al0.48As赝型高迁移率晶体管材料中纵向磁电阻的Shubnikov-deHaas(SdH)振荡效应和霍耳效应,通过对纵向磁电阻SdH振荡的快速傅里叶变换分析,获得了各子带电子的浓度,并因此求得了各子带能级相对于费米能级的位置.联立求解Schrdinger方程和Poisson方程,自洽计算了样品的导带形状、载流子浓度分布以及各子带能级和费米能级位置.理论计算和实验结果很好符合.实验和理论计算均表明,势垒层的掺杂电子几乎全部转移到了量子阱中,转移率在95%以上.  相似文献   
3.
SrTiO3金属-绝缘体-半导体结构的介电与界面特性   总被引:1,自引:0,他引:1       下载免费PDF全文
采用金属有机分解法在p型Si衬底上制备了SiTiO3(STO)薄膜.研究了STO薄膜金属-绝缘体-半导体(MIS)结构的介电和界面特性.结果表明,STO薄膜显示出优异的介电性能,在10kHz处的介电常数约为105,损耗低于0.01,这来源于多晶结构和良好的结晶性;MIS结构中的固定电荷密度Nf和界面态密度Dit分别约为1.5×1012cm-2和(1.4-3.5)×1012 cm-2 eV-1,这主要与Si/STO界面处形成的低介电常数界面层有关.  相似文献   
4.
采用金属有机分解法在p型Si衬底上制备了SrTiO3(STO)薄膜.研究了STO薄膜金属 绝缘体 半导体(MIS)结构的介电和界面特性.结果表明,STO薄膜显示出优异的介电性能,在10kHz处的介电常数约为105,损耗低于001,这来源于多晶结构和良好的结晶性;MIS结构中的固定电荷密度Nf和界面态密度Dit分别约为15×1012cm-2和(14—35)×1012cm-2eV-1,这主要与Si/STO界面处形成的低介电常数界面层有关. 关键词: SrTiO3薄膜 MIS结构 介电性能 Si/STO界面  相似文献   
5.
通过对GaN/A1xGa1-xN异质结中二维电子气磁输运结果的分析,研究了磁电阻的起因.结果表明,整个磁场范围的负磁电阻是由电子一电子相互作用引起的,而高场下的正磁电阻来源于平行电导的进一步修正.用拟合的方法得到了电子一电子相互作用项以及平行电导层的载流子浓度和迁移率,并用不同的计算方法对拟合结果进行了验证.  相似文献   
6.
研究了Si 重δ 掺杂In0.52Al0.48As/In0.53Ga0.47As/In0.52Al0.48As单量子阱内高迁移率二维电子气系统中的反弱局域效应. 研究表明,强的Rashba自旋轨道相互作用来源于量子阱高的结构反演不对称. 高迁移率系统中,粒子的运动基于弹道输运而非扩散输运. 因此,旧的理论模型不能用于拟合实验结果. 由于最新的模型在实际拟合中过于复杂,一种简单可行的近似用于处理实验结果,并获得了自旋分裂能Δ0和自旋轨道耦合常数α两个重要的物理参数. 该结果与对纵向电阻的Shubnikov-de Haas—SdH振荡分析获得的结果一致. 高迁移率系统中的反弱局域效应研究表明,发展有效的反弱局域理论模型,对于利用Rashba自旋轨道相互作用来设计自旋器件尤为重要.  相似文献   
7.
SrTiO3 (STO) thin films were deposited on p-Si(100) substrates at various substrate temperatures from 300℃ to 700℃ by radio frequency (RF) magnetron sputtering technique. Their structure and electrical properties were investigated. It was found that the transition from amorphous phase to polycrystalline phase occurred at the substrate temperatures 300--400℃. Their crystallinity became better when the substrate temperatures further increased. The dielectric and leakage current measurements were carried out by using the Si/STO/Pt metal--insulator--semiconductor (MIS) structures at room temperature. It was found that the fixed charge density decreased and both the interface trap density and the dielectric constant increased when the substrate temperatures were increased. The leakage current mechanisms for STO MIS structures with STO films prepared at 700℃ followed the space charge limited current (SCLC) under the low applied electric field and the Poole--Frenkel emission under the high one. In addition, the resistivity for films prepared at 700℃ was higher than 1011\Omega \cdot cm under the voltage lower than 10V (corresponding to the electric field of 1.54\times 103kV\cdotcm-1). It suggested that the STO films prepared at 700℃ were suitable for acting as the insulator of metal--ferroelectric--insulator--semiconductor (MFIS) structures.  相似文献   
8.
朱亮清  林铁  郭少令  褚君浩 《物理学报》2012,61(8):87501-087501
研究磁性半导体中负磁电阻产生机理对正确理解载流子与磁性离子间的sp-d磁交换作用 是非常重要的.通过变温(10---300 K)磁输运和变温(5---300 K)磁化率实验研究了一系列不同Mn含量 非简并p型Hg1-xMnxTe单晶(x>0.17)的负磁电阻和顺磁增强效应. 实验结果表明其负磁电阻与温度的关系和磁化率与温度的关系基本一致, 两者都包含一个呈指数型变化的温度函数exp(-K/T).根据磁性半导体的杂质能级理论, 非简并p型Hg1-xMnxTe单晶在低磁场范围内出现负磁电阻效应的主要物理机理 为外磁场的磁化效应使得受主杂质或受主型束缚磁极化子的有效电离能减小.  相似文献   
9.
利用化学束外延法制备了高迁移率的In0.53Ga0.47As/InP量子阱样品. 在样品的低温磁输运测试中, 观察到纵向磁阻的Shubnikov-de Hass (SdH) 振荡和零场自旋分裂引起的拍频. 本文提出一种解析的方法, 即通过同时拟合不同倾斜磁场下SdH振荡的傅里叶变换谱, 得到有效g因子的大小.  相似文献   
10.
研究了低温(15 K)条件下弱耦合GaAs/AlGaAs/InGaAs双势阱结构的纵向磁隧穿特性. 研究表明,器件在零偏压下处于共振状态. 通过分析不同偏压下的磁电导振荡曲线,可以得到双量子阱中的基态束缚能级随偏压的变化规律,从而可以确定隧穿电流峰对应的隧穿机制. 所得结果可为弱耦合双量子点器件的制备提供基础. 关键词: 双量子阱 隧穿结构 磁电导振荡  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号