首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
研究了Si 重δ 掺杂In0.52Al0.48As/In0.53Ga0.47As/In0.52Al0.48As单量子阱内高迁移率二维电子气系统中的反弱局域效应. 研究表明,强的Rashba自旋轨道相互作用来源于量子阱高的结构反演不对称. 高迁移率系统中,粒子的运动基于弹道输运而非扩散输运. 因此,旧的理论模型不能用于拟合实验结果. 由于最新的模型在实际拟合中过于复杂,一种简单可行的近似用于处理实验结果,并获得了自旋分裂能Δ0和自旋轨道耦合常数α两个重要的物理参数. 该结果与对纵向电阻的Shubnikov-de Haas—SdH振荡分析获得的结果一致. 高迁移率系统中的反弱局域效应研究表明,发展有效的反弱局域理论模型,对于利用Rashba自旋轨道相互作用来设计自旋器件尤为重要.  相似文献   

2.
张贺  骆军  朱航天  刘泉林  梁敬魁  饶光辉 《物理学报》2012,61(8):86101-086101
利用熔融快淬结合放电等离子烧结(SPS), 制备了CuxAg1-xSbTe2(x= 0---0.3)样品. 粉末X射线衍射(XRD)分析结果显示, SPS处理以前, 含Cu样品形成NaCl型结构的固溶体, 而未加入Cu的样品析出Ag2Te第二相. 根据热分析和XRD测量结果, Cu的加入能够有效抑制Ag2Te的析出, 但同时会在快淬样品中产生少量非晶相. 在温度升高到540 K左右时, 非晶相发生晶化, 形成Sb7Te亚稳相, 并最终转变成Sb2Te3稳定相. 对快淬样品进行低温SPS快速处理后, x =0.1样品为面心立方结构的单相化合物, 但是x =0.2, 0.3的样品分别析出第二相Sb7Te和Sb2Te3. 由于析出第二相, x=0.2, 0.3样品的电导率增大, Seebeck系数减小, 热导率相应升高, 综合热电性能降低. x=0.1单相样品的功率因子与文献报道的AgSbTe2化合物相当. 元素替代的合金化效应 增强了Cu0.1Ag0.9SbTe2化合物的声子散射, 有效降低了样品的热导率. 因此, 单相样品Cu0.1Ag0.9SbTe2表现出较佳的热电性能, 在620 K时热电优值达到1.  相似文献   

3.
声悬浮条件下黏性液滴的扇谐振荡规律研究   总被引:1,自引:0,他引:1       下载免费PDF全文
邵学鹏  解文军 《物理学报》2012,61(13):134302-134302
采用单轴式声悬浮方法研究了黏度μ =0.94-75.65 mPa·s的甘油-水溶液液滴的扇谐振荡规律. 发现一定阶数的振荡模式存在一定的临界黏度μc, 只有当μ < μc时, 该阶扇谐振荡才能被激发. 实验测定了声场调制幅度η = 0.23 时, l =2-9 阶扇谐振荡的临界黏度, 发现ln μcl近似呈线性递减关系. 采用参数共振理论分析了黏性液滴的扇谐振荡过程, 发现激发扇谐振荡的液滴赤道半径扰动阈值hc正比于液滴黏度μ, 并随l增大而增大, 因此扇谐振荡难以在高黏度和高阶模式下发生. 实验还发现, 各阶扇谐振荡的振幅和共振频率宽度随液滴黏度增大而减小, 黏度对液滴本征频率无明显影响.  相似文献   

4.
路芳  张兴华  卢遵铭  徐学文  唐成春 《物理学报》2012,61(14):144209-144209
利用固相反应法制备了Sr和Ba替代的Ca2.955-xMxSi2O7: 0.045Eu2+ (M= Sr, Ba, x= 0.1-0.5)系列荧光粉, 利用较大离子半径的Sr和Ba元素替代Eu掺杂Ca2.955-xMxSi2O7 中的Ca元素,研究Sr和Ba替代对样品结构和发光特性的影响. X射线衍射测试结果表明,少量Sr和Ba替代不会改变基质的晶体结构, 样品仍然为单斜晶系.未替代前, Ca2.955Si2O7: 0.045Eu2+ 样品的发射峰在574 nm左右,随着Sr含量的增加,样品的发射峰发生蓝移; 而Ba含量在x= 0.1-0.4时不会引起发射峰位置的移动, 但x= 0.5样品的发射峰发生蓝移.同等含量的Sr和Ba部分替代样品中的Ca元素, Ba替代样品的光谱强度较强.  相似文献   

5.
陈顺生  杨昌平  肖海波  徐玲芳  马厂 《物理学报》2012,61(14):147301-147301
采用两线测量模式对固相烧结方法制备的Nd1-xAxMnO3 (A= Ba, Ca, Sr,x= 0-0.9) 陶瓷样品电脉冲诱导电阻转变(EPIR)效应和I-V特性进行了测量. 结果表明, 与Nd0.7Sr0.3MnO3一样, 相同浓度掺杂的Nd0.7Ba0.3MnO3和Nd0.7Ca0.3MnO3 样品也能诱发稳定的室温EPIR效应. 进一步对Nd1-xSrxMnO3系列样品的EPIR研究表明, 这种界面相关的EPIR效应与样品中电子或空穴掺杂浓度密切相关, 在半掺杂 (x= 0.5)附近, 样品与电极接触界面能诱发稳定的EPIR效应. 然而, 随掺杂浓度的进一步增大或降低, EPIR效应逐渐出现减弱、不明显到完全消失的过程. 产生这种现象的原因可能与锰氧化物中由于掺杂浓度差异所导致的界面缺陷在不同极性脉冲激励下重新分布而产生的内电场强弱有关.  相似文献   

6.
李志成  刘斌  张荣  张曌  陶涛  谢自力  陈鹏  江若琏  郑有蚪  姬小利 《物理学报》2012,61(8):87802-087802
采用光学传递矩阵方法设计了紫外波段SiO2/Si3N4介质膜分布式布拉格反射镜, 并利用等离子体增强化学气相沉积技术在蓝宝石(0001)衬底上制备了SiO2/Si3N4介质膜分布式布拉格反射镜. 光反射测试表明, 样品反射谱的峰值波长仅与理论模拟谱线相差10 nm, 并随着反射镜周期数的增加而蓝移. 由于SiO2与Si3N4具有相对较大的折射率比, 因而制备的周期数为13的样品反射谱的峰值反射率就已大于99%. 样品反射谱的中心波长为333 nm, 谱峰的半高宽为58 nm. 样品截面的扫描电子显微镜和表面的原子力显微镜测量结果表明, 样品反射谱的中心波长蓝移是由子层的层厚和界面粗糙度的变化引起的. X射线反射谱表明,子层界面过渡层对于反射率的影响较小, 并且SiO2膜的质量比Si3N4差, 也是造成反射率低于理论值的原因之一.  相似文献   

7.
Ce3+ 掺杂高密度氧化物玻璃的闪烁性能研究   总被引:2,自引:0,他引:2       下载免费PDF全文
杨斌  张约品  徐波  来飞  夏海平  赵天池 《物理学报》2012,61(19):192901-192901
用高温熔融法制备了以SiO2-B2O3-Al2O3-Gd2O3为基质系统Ce3+掺杂的玻璃样品, 测试样品的密度、紫外——可见透射光谱、紫外激发光谱和主要的闪烁性能, 并且把一部分闪烁性能和PbWO晶体及BGO晶体做比较. 着重研究了不同Ce3+掺杂浓度与Gd3+ 离子的含量对玻璃样品闪烁性能的影响规律. 结果表明: 玻璃样品具有较大的密度; 样品的X射线激发发射光谱发射峰位置都在390 nm左右, 当Ce3+ 离子的掺杂浓度为1.0 mol%(摩尔分数)、Gd2O3含量为15 mol%时, 玻璃样品的发光峰强度达到BGO晶体发光强度的90%; 同样验证了Ce3+ 离子具有浓度猝灭效应; Gd3+可以敏化Ce3+离子发光, 但是Gd3+离子到达一定浓度时, 反而会产生猝灭效应, 降低了Ce3+ 离子的发光. Ce3+ 离子掺杂SiO2-B2O3-Al2O3-Gd2O3系统的闪烁玻璃有望替代闪烁晶体广泛应用于高能物理中.  相似文献   

8.
采用无助剂、无模板的水热法成功合成网状Bi2MoO6. pH值对这一形貌的形成起重要作用. 所制备的网状Bi2MoO6样品表现出优异的可见光催化活性,其光催化活性比固相法合成的块状Bi2MoO6样品高得多.  相似文献   

9.
用溶胶凝胶法制备了Nb掺杂多铁BiFe1-xNbxO3粉晶样品(0 <x <0.05),研究Nb掺杂对样品的结构、磁学和光学性质的影响。根据XRD图谱和Rietveld精修的结果可知,所有的样品仍保持R3c相,但晶格常数a,c,晶胞体积V和Fe-O-Fe键角发生变化。适当的Nb掺杂使得样品晶粒尺寸减小,导致剩余磁化强度的增强,使得BiFe1-xNbxO3样品的禁带窄化.  相似文献   

10.
吴子华  谢华清 《中国物理 B》2010,19(4):2703-2707
对电脉冲诱导的不同电阻态下La0.7Ca0.3MnO3样品的比热进行了研究.实验结果表明,电脉冲导致La0.7Ca0.3MnO3样品比热随电阻状态发生可逆变化.比热随电阻状态的减小而减小.低温比热拟合及不同电阻状态下的比热差与温度关系说明,声子对比热的贡献不随电阻状态变化,磁性和载流子对比热的贡献是导致La0.7Ca0.3MnO3样品比热变化的原因.电脉冲诱导O离子沿一维扩展性缺陷的电化学迁移,导致材料中局部区域的O离子浓度发生变化.O离子浓度的变化导致载流子浓度的变化,同时载流子浓度的变化将使得低温下磁性耦合强度发生变化,从而导致比热发生变化.  相似文献   

11.
The subband structure and occupation in the triangular quantum well at Al x Ga1−x N/GaN heterointerfaces have been investigated by means of temperature dependent Shubnikov–de Haas (SdH) measurements at low temperatures and high magnetic fields under illumination. After the illumination of the heterostructures, the total two-dimensional electron gas concentration increases, and the SdH oscillation amplitudes are enhanced when there is no additional subband occupation. It is also found that the energy separation between the subbands decreases after the illumination. We suggest that the illumination decreases the electric field and thus weakens the quantum confinement of the triangular quantum well at Al x Ga1−x N/GaN heterointerfaces. The GaN layer is thought to be the primary contributor of the excited electrons by the illumination.  相似文献   

12.
We investigate the physical properties of massive Dirac fermions in SrMnSb2 using transport, specific heat, electronic structure calculations, and Shubnikov-de Haas (SdH) oscillations. SrMnSb2 is a candidate Dirac antiferromagnet, consisting of the MnSb layers and the distorted square net of Sb atoms with a zigzag chain structure. This structural distortion leads to gap opening at the band crossing point found in the square lattice of the sister compound SrMnBi2 but leaves another Dirac band crossing near the Brillouin zone boundary. The small 2D Fermi surface with a light electron mass and a small Fermi energy is confirmed by the large resistivity anisotropy, the large Seebeck coefficient, and also the angle and temperature dependent SdH oscillations. The Berry phase obtained from the SdH oscillations is trivial, in contrast to the case of SrMnBi2. The relatively large spin orbit coupling gap and the small Fermi energy in SrMnSb2 is found to be essential to understand this contrasting behavior of the massive Dirac fermions as compared to SrMnBi2. Our observations demonstrate that the Berry phase of the mobile electrons in SrMnSb2 is sensitive to the Fermi level change and can be tuned by doping or deficiency.  相似文献   

13.
The electronic structure of the quasi two-dimensional (2D) organic superconductor -(ET)2SF5CH2CF2SO3 was examined by measuring Shubnikov-de Haas (SdH) and angle-dependent magnetoresistance (AMRO) oscillations and by comparing with electronic band-structure calculations. The SdH oscillation frequencies follow the angular dependence expected for a 2D Fermi surface (FS), and the observed fundamental frequency shows that the 2D FS is 5% of the first Brillouin zone in size. The AMRO data indicate that the shape of the 2D FS is significantly non-circular. The calculated electronic structure has a 2D FS in general agreement with experiment. From the temperature and angular dependence of the SdH amplitude, the cyclotron and band effective masses were estimated to be and ,where g is the conduction electron g factor and the free electron mass. The band effective mass is estimated to be from the calculated electronic band structure. Received: 3 March 1997 / Revised: 5 May 1997 / Received in final form: 5 November 1997 / Accepted: 10 November 1997  相似文献   

14.
The two-dimensional (2D) electron energy relaxation in Al0.25Ga0.75N/AlN/GaN heterostructures was investigated experimentally by using two experimental techniques; Shubnikov-de Haas (SdH) effect and classical Hall Effect. The electron temperature (Te) of hot electrons was obtained from the lattice temperature (TL) and the applied electric field dependencies of the amplitude of SdH oscillations and Hall mobility. The experimental results for the electron temperature dependence of power loss are also compared with the current theoretical models for power loss in 2D semiconductors. The power loss that was determined from the SdH measurements indicates that the energy relaxation of electrons is due to acoustic phonon emission via unscreened piezoelectric interaction. In addition, the power loss from the electrons obtained from Hall mobility for electron temperatures in the range Te > 100 K is associated with optical phonon emission. The temperature dependent energy relaxation time in Al0.25Ga0.75N/AlN/GaN heterostructures that was determined from the power loss data indicates that hot electrons relax spontaneously with MHz to THz emission with increasing temperatures.  相似文献   

15.
Abstract

The electronic transport properties of Dirac fermions in chemical vapour-deposited single-layer epitaxial graphene on anSiO2/Si substrate have been investigated using the Shubnikov–de Haas (SdH) oscillations technique. The magnetoresistance measurements were performed in the temperature range between 1.8 and 43 K and at magnetic fields up to 11 T. The 2D carrier density and the Fermi energy have been determined from the period of the SdH oscillations. In addition, the in-plane effective mass as well as the quantum lifetime of 2D carriers have been calculated from the temperature and magnetic field dependences of the SdH oscillation amplitude. The sheet carrier density (1.42 × 1013 cm?2 at 1.8 K), obtained from the low-field Hall Effect measurements, is larger than that of 2D carrier density (8.13 × 1012 cm?2). On the other hand, the magnetoresistance includes strong magnetic field dependent positive, non-oscillatory background magnetoresistance. The strong magnetic field dependence of the magnetoresistance and the differences between sheet carrier and 2D carrier density can be attributed to the 3D carriers between the graphene sheet and the SiO2/Si substrate.  相似文献   

16.
Shubnikov–de Haas (SdH) and Hall effect measurements, performed in the temperature range between 3.3 and 20 K and at magnetic fields up to 2.3 T, have been used to investigate the electronic transport properties of lattice-matched In0.53Ga0.47As/In0.52Al0.48As heterojunctions. The spacer layer thickness (tS) in modulation-doped samples was in the range between 0 and 400 Å. SdH oscillations indicate that two subbands are already occupied for all samples except for that withtS =  400 Å. The carrier density in each subband, Fermi energy and subband separation have been determined from the periods of the SdH oscillations. The in-plane effective mass (m * ) and the quantum lifetime (τq) of 2D electrons in each subband have been obtained from the temperature and magnetic field dependences of the amplitude of SdH oscillations, respectively. The 2D carrier density (N1) in the first subband decreases rapidly with increasing spacer thickness, while that (N2) in the second subband, which is much smaller thanN1 , decreases slightly with increasing spacer thickness from 0 to 200 Å. The in-plane effective mass of 2D electrons is similar to that of electrons in bulk In0.53Ga0.47As and show no dependence on spacer thickness. The quantum mobility of 2D electrons is essentially independent of the thickness of the spacer layer in the range between 0 and 200 Å. It is, however, markedly higher for the samples with a 400 Å thick spacer layer. The quantum mobility of 2D electrons is substantially smaller than the transport mobility which is obtained from the Hall effect measurements at low magnetic fields. The transport mobility of 2D electrons in the first subband is substantially higher than that of electrons in the second subband for all samples with double subband occupancy. The results obtained for transport-to-quantum lifetime ratios suggest that the scattering of electrons in the first subband is, on average, forward displaced in momentum space, while the electrons in the second subband undergo mainly large-angle scattering.  相似文献   

17.
Shubnikov–de Haas (SdH) and Hall measurements have been used to investigate a pair of adjacent two-dimensional electron gases (2DEGs) which were formed in two n0.53Ga0.47As quantum-wells, separated by a thin In0.52Al0.48As barrier, grown lattice-matched on InP. This double quantum-well system consists of two asymmetric InGaAs quantum wells, 9 nm and 7 nm respectively, separated by a 4.5 nm InAlAs barrier. The existence of two occupied electronic subbands with differing electron densities can clearly be identified by beating effects in the SdH oscillations. By applying a substrate bias the electron densities can be tuned and the beating is shifted. In the simultaneously performed Hall measurements additional features can be observed: Hall measurements with different total electron densities reveal plateaus for integer filling factors ν (with ν = ν1 + ν2, ν1and ν2both integers, corresponding to the two subbands). Some even filling factors become suppressed and recover with changing electron density. Also, for some densities an odd filling factor is observed. The systematic tuning of the electron densities via the application of a bias voltage to the front gate reveals two Landau fans, one for each electronic system, respectively, crossing each other. The electron densities for both electronic systems can be identified by analysing the SdH spectra. As a function of the front-gate voltage, these densities seem to show evidence for an anticrossing of the two electronic states and therefore for a strong coupling between the states.  相似文献   

18.
The Shubnikov-de Haas (SdH) oscillation spectra of the -(BEDT-TTF)4(NH4)[ Cr(C2O4)3] .DMF organic metal have been studied in pulsed magnetic fields of up to either 36 T at ambient pressure or 50 T under hydrostatic pressures of up to 1 GPa. The ambient pressure SdH oscillation spectra can be accounted for by up to six fundamental frequencies which points to a rather complex Fermi surface (FS). A noticeable pressure-induced modification of the FS topology is evidenced since the number of frequencies observed in the spectra progressively decreases as the pressure increases. Above 0.8 GPa, only three compensated orbits are observed, as it is the case for several other isostructural salts of the same family at ambient pressure. Contrary to other organic metals, of which the FS can be regarded as a network of orbits, no frequency combinations are observed for the studied salt, likely due to high magnetic breakdown gap values or (and) high disorder level evidenced by Dingle temperatures as large as ≃7 K.  相似文献   

19.
Pressure dependence of the Shubnikov-de Haas (SdH) oscillations spectra of the quasi-two dimensional organic metal (ET)8[ Hg4Cl12(C6H5Br)2] have been studied up to 1.1 GPa in pulsed magnetic fields of up to 54 T. According to band structure calculations, its Fermi surface can be regarded as a network of compensated orbits. The SdH spectra exhibit many Fourier components typical of such a network, most of them being forbidden in the framework of the semiclassical model. Their amplitude remains large in all the pressure range studied which likely rules out chemical potential oscillation as a dominant contribution to their origin, in agreement with recent calculations relevant to compensated Fermi liquids. In addition to a strong decrease of the magnetic breakdown field and effective masses, the latter being likely due to a reduction of the strength of electron correlations, a sizeable increase of the scattering rate is observed as the applied pressure increases. This latter point, which is at variance with data of most charge transfer salts is discussed in connection with pressure-induced features of the temperature dependence of the zero-field interlayer resistance.  相似文献   

20.
The electronic properties of the organic superconductor (BEDO-TTF)2 ReO4·(H2O) were investigated by temperature dependent resistivity, ESR, Hall effect and magnetoresistance measurements. Shubnikov-de Haas (SdH) oscillations were observed in magnetic fields up to 24 T in the temperature range 0.5 K to 4.2 K. The electronic band structure of (BEDO-TTF)2 ReO4·(H2O) was calculated by employing the extended Hückel tight binding method on the basis of its room temperature crystal structure. The two observed SdH frequencies of 75 T and 37 T correspond very well with two cross-sectional areas of the hole and electron Fermi surface pockets obtained from the tight binding calculation. From the temperature dependence of the SdH oscillation amplitudes, the cyclotron effective mass (mc) belonging to the larger and smaller pockets were found to be 0.9 m0 and mc=1.15 m0 respectively. Measurements of the angular dependence of the SdH frequencies show no deviation from that expected for a cylindrical Fermi surface. In terms of our tight binding calculations and experimental measurements, probable causes for the 213 K and 35 K phase transitions are discussed. The calculations show that (BEDO-TTF)2 ReO4·(H2O) is a two dimensional semimetal but possesses a hidden nesting. The latter is likely to cause an SDW instability leading to the 35 K transition. The resistivity drop associated with the 213 K transition is likely to be induced by an abrupt increase in the relaxation time. The excellent agreement between the calculated and experimentally observed Fermi surface implies that, with decreasing temperature below 35 K, (BEDO-TTF)2 ReO4·(H2O) gradually gets out of the SDW state and re-enters the original metallic state, in which it becomes superconducting below 2.4 K.Reported at the 13th Genral Conference of the Condensed Matter Division of the European Physical Society, Regensburg, March 1993  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号