首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65989篇
  免费   6871篇
  国内免费   10862篇
化学   63981篇
晶体学   308篇
力学   820篇
综合类   799篇
数学   7035篇
物理学   10779篇
  2023年   916篇
  2022年   1214篇
  2021年   2396篇
  2020年   2901篇
  2019年   2565篇
  2018年   2309篇
  2017年   2064篇
  2016年   2694篇
  2015年   2776篇
  2014年   3587篇
  2013年   5484篇
  2012年   3530篇
  2011年   4095篇
  2010年   3390篇
  2009年   3969篇
  2008年   4270篇
  2007年   4402篇
  2006年   3767篇
  2005年   3078篇
  2004年   2952篇
  2003年   2552篇
  2002年   1852篇
  2001年   1716篇
  2000年   1385篇
  1999年   1127篇
  1998年   1074篇
  1997年   979篇
  1996年   952篇
  1995年   960篇
  1994年   852篇
  1993年   840篇
  1992年   787篇
  1991年   499篇
  1990年   425篇
  1989年   360篇
  1988年   355篇
  1987年   263篇
  1986年   265篇
  1985年   380篇
  1984年   289篇
  1983年   175篇
  1982年   324篇
  1981年   495篇
  1980年   452篇
  1979年   482篇
  1978年   392篇
  1977年   309篇
  1976年   271篇
  1974年   114篇
  1973年   173篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
A catalyst based on MoO3 was synthesized by a simple and fast pilot-scale combustion reaction method and applied to the conversion of soybean oil to biodiesel via transesterification. For that, the statistical analysis of the catalyst amount and temperature, factors that influence the process, was evaluated by means of central composite design 22. MoO3 was characterized in terms of structure by X-ray diffraction (XRD), textural characterization Brunauer-Emmett-Teller (BET), density by helium pycnometry (DE), particle size analysis (DG) and acidity tests by temperature-programmed desorption of ammonia (NH3-TPD), chemical analysis by X-ray fluorescence (EDX), morphology by scanning electron microscopy (SEM) and catalytic properties. The transesterification products were characterized by gas chromatography (GC), acidity index (AI) and kinematic viscosity (KV). The results indicate the catalyst formation with a surface area of 1.36 m2g?1, and density of 4.5 g/cm3 which consists of a single crystalline phase of orthorhombic configuration, with total NH3 acidity of 33.61 μ.mol/g. Morphological characterization revealed that the catalyst is formed by irregular plates of various sizes and shapes, with a wide sizes range of agglomerated particles. In the soybean oil transesterification reactions, the catalyst was active showing 96.9% conversion to ethyl esters. The experimental design was meaningful and predictive, with a reliability level of 95%. The statistical analysis identified temperature as a significant variable for the adopted planning. To conclude, a new single-phase catalyst (α-MoO3) has been developed and successfully applied to the biodiesel Synthesis from soybean oil. These results have a positive and promising impact for biodiesel production by transesterification of soybean oil against ethanol.  相似文献   
2.
The requirement of green and sustainable materials to prepare heterogeneous catalysts has intensified for practical reasons over the past few decades. Carbohydrates are possibly the most plentiful and renewable organic materials in nature with inimitable physiochemical properties, plausible low-cost and large-scale production, and sustainability features could be exploited in the generation of nanostructured heterogeneous catalysts. This review article outlines the organic transformations catalyzed by diverse carbohydrate-based nanostructured catalysts in greener and environmentally friendly processes. Selected examples are highlighted for a variety of organic reactions exploiting the proposed catalysts’ reactivity and reusability, and interactions with the intrinsic nature of the applied carbohydrate supports; advantages and speculated challenges of the introduced catalysts are deliberated as well.  相似文献   
3.
This review summarizes recent progress in understanding the oxygen reduction and evolution reactions at the lanthanum strontium manganite electrode of a high-temperature solid oxide cell. Information provided here is put into the perspective of the defect chemistry of lanthanum strontium manganite and its impact on the electrode reaction mechanisms itself. After summarizing recent views on the oxygen reduction reaction mechanism, the focus turns to the oxygen evolution reaction, which is significantly less treated in the literature. A combination of the information in the literature on both reactions was the basis for modified reaction mechanism of the oxygen evolution reaction to be proposed under consideration of recent experimental observations and theoretical findings.  相似文献   
4.
Photocatalytic CO2 reduction to C1 fuels is considered to be an important way for alleviating increasingly serious energy crisis and environmental pollution. Due to the environment-friendly, simple preparation, easy formation of highly-stable metal-nitrogen(M-Nx) coordination bonds, and suitable band structure, polymeric carbon nitride-based single-atom catalysts(C3N4-based SACs) are expected to become a potential for CO2 reduction under visible-light irradiation. In this review, we summarize the recent advancement on C3N4-based SACs for photocatalytic CO2 reduction to C1 products, including the reaction mechanism for photocatalytic CO2 reduction to C1 products, the structure and synthesis methods of C3N4-based SACs and their applications toward photocatalytic CO2 reduction reaction(CO2RR) for C1 production. The current challenges and future opportunities of C3N4-based SACs for photoreduction of CO2 are also discussed.  相似文献   
5.
In this article, a way to employ the diffusion approximation to model interplay between TCP and UDP flows is presented. In order to control traffic congestion, an environment of IP routers applying AQM (Active Queue Management) algorithms has been introduced. Furthermore, the impact of the fractional controller PIγ and its parameters on the transport protocols is investigated. The controller has been elaborated in accordance with the control theory. The TCP and UDP flows are transmitted simultaneously and are mutually independent. Only the TCP is controlled by the AQM algorithm. Our diffusion model allows a single TCP or UDP flow to start or end at any time, which distinguishes it from those previously described in the literature.  相似文献   
6.
《中国物理 B》2021,30(5):56501-056501
Thermal expansion control is always an obstructive factor and challenging in high precision engineering field. Here,the negative thermal expansion of Nb F_3 and Nb OF_2 was predicted by first-principles calculation with density functional theory and the quasi-harmonic approximation(QHA). We studied the total charge density, thermal vibration, and lattice dynamic to investigate the thermal expansion mechanism. We found that the presence of O induced the relatively strong covalent bond in Nb OF_2, thus weakening the transverse vibration of F and O in Nb OF_2, compared with the case of Nb F_3.In this study, we proposed a way to tailor negative thermal expansion of metal fluorides by introducing the oxygen atoms.The present work not only predicts two NTE compounds, but also provides an insight on thermal expansion control by designing chemical bond type.  相似文献   
7.
Wacker oxidation is an industry-adopted process to transform olefins into value-added epoxides and carbonyls. However, traditional Wacker oxidation involves the use of homogeneous palladium and copper catalysts for the olefin addition and reductive elimination. Here, we demonstrated an ultrahigh loading Cu single atom catalyst(14% Cu, mass fraction) for the palladium-free Wacker oxidation of 4-vinylanisole into the corresponding ketone with N-methylhydroxylamine hydrochloride as an additive under mild conditions. Mechanistic studies by 18O and deuterium isotope labelling revealed a hydrogen shift mechanism in this palladium-free process using N-methylhydroxylamine hydrochloride as the oxygen source. The reaction scope can be further extended to Kucherov oxidation. Our study paves the way to replace noble metal catalysts in the traditional homogeneous processes with single atom catalysts.  相似文献   
8.
直接碳燃料电池(DCFC)是一种清洁高效利用碳资源发电的装置。其因能量转换率高,对环境污染小,燃料选择范围广等优点获得了越来越多的关注。DCFC的性能与使用的燃料密切相关,为了探究燃料对DCFC的影响,本文分别阐述了石墨、炭黑、中密度纤维板、生物质、煤、活性炭的特性及改性方法,分析讨论了燃料表面含氧官能团以及燃料中的金属催化剂对阳极电化学反应的促进作用,发现燃料表面化学性质要比比表面积更加重要。同时,本文也提出了对生物质这一优良的可再生资源的期待,为未来DCFC燃料的发展提供参考。  相似文献   
9.
Two-stage ignition exists in the low-temperature combustion process of n-heptane and the first-stage ignition also shows a negative temperature coefficient(NTC) phenomenon. To study key reactions and understand chemical principles affecting the first-stage ignition of n-heptane, a lumped skeletal mechanism with 62 species is obtained based on the detailed NUIGMech1.0 mechanism using the directed relation graph method assisted by sensitivity analysis and isomer lumping. The lumped mechanism shows good performance on ignition delay time under wide conditions. The study revealed that the temperature after the first-stage ignition is higher and a larger amount of fuel is consumed at lower initial temperatures. The temperature at the first-stage ignition is relatively insensitive to the initial temperature. Further sensitivity analysis and reaction path analysis carried out based on the lumped mechanism show that the decomposition of RO2 to produce alkene and HO2is the most important reaction to inhibit the first-stage ignitions. The chain branching explosion closely related to the first-stage ignition will be terminated when the rate constant for the RO2 decomposition is larger than that of the isomerization of RO2 to produce QOOH. The NTC behavior as well as other characteristics of the first-stage ignition can be rationalized from the competition between these two reactions.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号