首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   847篇
  免费   576篇
  国内免费   702篇
化学   318篇
晶体学   8篇
力学   113篇
综合类   67篇
数学   149篇
物理学   1470篇
  2024年   5篇
  2023年   13篇
  2022年   15篇
  2021年   23篇
  2020年   17篇
  2019年   17篇
  2018年   21篇
  2017年   28篇
  2016年   39篇
  2015年   40篇
  2014年   64篇
  2013年   69篇
  2012年   68篇
  2011年   85篇
  2010年   100篇
  2009年   97篇
  2008年   104篇
  2007年   92篇
  2006年   118篇
  2005年   108篇
  2004年   124篇
  2003年   95篇
  2002年   115篇
  2001年   73篇
  2000年   77篇
  1999年   55篇
  1998年   60篇
  1997年   59篇
  1996年   45篇
  1995年   38篇
  1994年   54篇
  1993年   49篇
  1992年   45篇
  1991年   37篇
  1990年   35篇
  1989年   16篇
  1988年   4篇
  1987年   6篇
  1986年   4篇
  1985年   2篇
  1984年   2篇
  1983年   4篇
  1982年   2篇
  1959年   1篇
排序方式: 共有2125条查询结果,搜索用时 16 毫秒
1.
本文研究高zeta势下具有Navier滑移边界条件的幂律流体,在变截面微管道中的垂向磁场作用下的旋转电渗流动.在不使用Debye–Hückel线性近似条件时,利用有限差分法数值计算外加磁场的旋转电渗流的电势分布和速度分布.当行为指数n=1时得到的流体为牛顿流体,将本文的分析结果与Debye–Hückel线性近似所得解析近似解作比较,证明本文数值方法的可行性.除此之外,还详细讨论行为指数n、哈特曼数Ha、旋转角速度?、电动宽度K及滑移参数β对速度分布的影响,得到当哈特曼数Ha>1时,速度随着哈特曼数Ha的增加而减小;但当哈特曼数Ha <1时, x方向速度u的大小随着Ha的增加而增加.  相似文献   
2.
基于自旋相关局域Hartree-Fock (SLHF)势函数,本文提出了一种计算双原子分子激发态势能的密度泛函理论(DFT)方法,并将该方法应用于和的激发态势能曲线的计算。在只考虑交换能的情况下,本文的DFT计算结果与文献中精确方法和Hartree-Fock (HF)方法的结果符合的非常好,说明采用SLHF势函数作为交换势的DFT方法是一个很好的计算激发态势能的方法。本文还计算和探讨了电子的关联势函数和关联能,发现传统的近似方法在较大核间距的情况下大大低估了电子的关联能.  相似文献   
3.
量子疤痕是波函数在经典不稳定周期轨道周围反常凝聚的一种量子或波动现象.人们对疤痕态的量子化条件进行了大量研究,对深入理解半经典量子化起到了一定的促进作用.之前大部分研究工作主要集中在硬墙量子弹球上,即给定边界形状的无穷深量子势阱系统.本文研究具有光滑复杂势场的二维量子弹球系统,考察疤痕态的量子化条件及其重复出现的规律,得到了与硬墙弹球不一样的结果,对理解这类现象是一个有益的补充.这些结果将有助于理解具有无规长程杂质分布的二维电子系统的态密度谱和输运行为.  相似文献   
4.
针对设计的喉径2mm、工作电流为100A的拉瓦尔喷嘴,在二维轴对称模型的基础上,对超音速等离子体炬中的流动及其外部射流进行了数值模拟。通过在阳极喷嘴内部采用基于磁矢量势的磁流体动力学模型,避免了对磁感应强度的复杂积分计算,得到了喷嘴内部多场耦合的结果及外部射流的流动状态,分析了喷嘴内部电磁场对等离子体的加速作用及射流发展过程。结果显示,等离子体经历了亚音速→跨音速→超音速的发展过程,最终获得2.3 Ma的超音速射流。研究结果为超音速等离子体炬的工业应用提供了理论基础。  相似文献   
5.
李扬  刘先斌 《力学学报》2020,52(1):184-195
在生物物理学中, 越来越多的现象是由于分段确定性的动力系统与连续时间马氏过程之间的耦合作用而产生的. 因为这种耦合性, 相关的数学模型更适合取为随机混合系统而不是扩散过程(基于It?随机微分方程). 本文从理论上和数值上研究了在弱噪声条件下无鞍点状态的随机混合Morris-Lecar系统中, 由通道噪声诱导的自发性放电现象. 一个动作电位的初始阶段可视为噪声诱导的逃逸事件, 其最优路径和拟势可由辅助Hamilton系统给出. 由于系统不存在鞍点, 因此可选择虚拟分界线(ghost separatrix)为阈值, 研究噪声诱导的自静息态的逃逸事件. 通过计算在阈值处的拟势, 便可发现其值有一个明显的最小值, 其作用类似于鞍点. 通过改进的Monte Carlo模拟方法, 计算了历程概率分布, 其结果对初始阶段和兴奋阶段的理论解均给出了验证. 此外, 基于前人将拟势等高线作为阈值的另一种选择, 我们对两种阈值取法的优劣性进行了比较. 最后, 本文研究了钠离子和钾离子通道噪声的不同组合对最优路径和拟势的影响. 结果表明: 钾离子通道噪声在自发性放电过程中起主导作用, 且两种噪声强度存在一个最优比例能使总的噪声强度达到最小.   相似文献   
6.
实验势精修是20世纪80年代英国散裂中子源无定型材料组开发的用于分析中子散射实验数据的软件. 实验势精修的目标是根据中子散射数据重建样品的三维原子结构. 在过去的几十年,实验势精修被广泛用于中子散射实验数据分析,为实验用户提供了可靠的分析结果. 但是实验势精修是基于共享内存并行计算(OpenMP)的Fortran程序,不支持计算机服务器集群跨节点并行加速和GPU加速;这限制了它的分析速度. 随着计算机服务器集群的广泛建设和GPU加速技术的普遍使用,有必要重新编写EPSR程序以提高运算速度. 本文使用面向对象的C++语言,开发了一套实现EPSR算法的开源软件包NeuDATool;软件通过MPI和CUDA C实现了计算机集群跨节点并行和GPU加速. 使用液态水和玻璃态二氧化硅的中子散射实验数据对软件进行了测试. 测试显示软件可以正确重建出样品的三维原子结构;并且模拟体系达到10万原子以上时,使用GPU加速可以比串行的CPU算法提高400倍以上的模拟速度. NeuDATool为中子实验用户尤其是对熟悉C++编程并希望定义特殊分析算法的实验科学家提供了一种新的选择.  相似文献   
7.
针对放射源搜寻过程中难度大、定位精度低等问题,提出了一种适用于移动机器人的自主寻源方法。该方法利用移动机器人搭载辐射探测器采集的剂量计数值,根据γ射线的衰减规律建立辐射衰减模型;在机器人前进的过程中利用粒子滤波算法对放射源的参数进行实时估计;采用高斯分布函数对重采样后的粒子进行自适应更新,保证重采样后的粒子具有多样性;根据辐射环境创建机器人路径规划模型,采用人工势场法规划机器人的自主寻源路径。实验在Matlab下进行了仿真验证,结果表明,该方法在有遮挡环境下能够搜寻到未知的单点源,同时自适应更新能够提高算法的稳定性,缩小寻源误差。  相似文献   
8.
利用分子光谱和基于密度泛函理论的第一性原理,采用改进的TPSSTPSS泛函方法对C、H、O原子用6-31G基组并添加极化和弥散函数,对La原子选用Def2-SV(P)赝势基组,研究La3+/乙醇溶液微团簇构型。优化计算La3+在水溶液中的溶剂化结构,得出气相中的优化结果可以近似代替液相结果的结论;理论优化计算La3+/乙醇溶液可能存在的结构构型的结果表明,溶剂化数n=6时结构最稳定。采用荧光光谱和核磁共振实验对结果进行了验证,表明La3+的加入使荧光强度显著增强,在高浓度时生成的团簇构型比较稳定,且随着溶剂化数目的增加,O—H键长增大,La3+使其附近的质子产生强大的屏蔽效应,化学位移向高场移动,溶剂化数n=6时绝对误差最小,最稳定,与理论计算结论相吻合。  相似文献   
9.
王雪飞  高鹏  高美  廖知常  王卓 《化学教育》2022,43(6):126-129
对于原电池,电极电势的本质是化学体系对电极材料上电子势能的影响,其正负极电势差反映化学能向电能转化的趋势。电极界面上化学物质的氧化/还原反应是通过何种途径影响到电极上电子势能的,现有的教材和论著没有给出明确的解释。本文基于相间电化学势平衡原则阐明了固液界面上离子平衡与电极上电子电势的关系,并由此给出了标准电势的物理含义:它是构成电极体系一系列物性参数的组合,包括被测电极的电子、离子化学势,工作电极电解液的离子化学势,参比电极的电子、离子化学势和参比电极电解液的离子化学势等。  相似文献   
10.
赵英国  方晖  郭畅 《化学教育》2021,42(16):97-100
依据液接电势达稳态时通过边界层的净电荷为零这一思想,提出了一种计算液接电势的新方法。对于3类液接电势的计算,特别是Lewis-Sargent公式与Henderson方程的推导,思路清晰易懂,避免了过往液接电势计算方法存在的一些问题。本文所提出的方法能够为液接电势相关内容的教学提供借鉴。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号